Connect with us

Published

on

Elon Musk‘s brain implant startup Neuralink, which was valued at close to $2 billion (roughly Rs. 16,500 crore) in a private fundraising round two years ago, is now worth around $5 billion (roughly Rs. 41,300 crore) based on privately executed stock trades described to Reuters by five sources with knowledge of the matter.

Some purchases by bullish investors boosted the valuation in recent months, ahead of Neuralink’s May 25 announcement that U.S. regulators had approved a human trial on its brain chip, the sources said.

Experts have said it could take several years for Neuralink to secure commercial use clearance. Kip Ludwig, former program director for neural engineering at the U.S. National Institutes of Health (NIH), said he “optimistically” expected Neuralink to take at least 10 more years to commercialize its brain implant. The company also faces other challenges that include federal probes into its handling of animal research.

Following the trial’s approval, however, Neuralink shares were marketed privately to investors in recent days at a $7 billion (roughly Rs. 57,900 crore) valuation, equivalent to $55 (roughly Rs. 4,500) per share, according to an email seen by Reuters. Reuters could not establish whether the seller found buyers for that price. The email cited the U.S. Food and Drug Administration’s (FDA) approval of the clinical trial as grounds for the deal being “sweeter.”

Neuralink executives and Musk did not respond to requests for comment.

Musk has expressed grand ambitions for Neuralink, saying its chip would allow healthy and disabled people alike to pop into neighbourhood facilities for speedy surgical insertions of devices to treat obesity, autism, depression and schizophrenia. He even sees them being used for web-surfing and telepathy. A Neuralink executive recently gave more modest short-term objectives, such as helping paralyzed patients communicate through computerized text without typing.

The stock transactions at a valuation of around $5 billion (roughly Rs. 41,300 crore) have been carried out by shareholders such as employees and the company’s early backers, rather than Neuralink selling new shares to investors. Such so-called secondary trades are an imperfect gauge of a company’s value; their volume is thin and they lack the wider market consensus of a fundraising round or initial public offering (IPO).

Neuralink’s valuation jump in secondary trades is in sharp contrast to other startups. About 85percent of pre-IPO companies are currently valued in secondary trades at an average discount of 47 percent to their last funding round, according to data provider Caplight.

In Neuralink’s last known fundraising in 2021, it raised $205 million (roughly Rs. 1,700 crore) at an approximately $2 billion (roughly Rs. 16,500 crore) valuation, according to data provider Pitchbook.

Many of the recent stock sales have been to relatively small investors, who typically focus more on getting a slice of a company owned by Musk than scrutinizing its valuation. The maximum amount sought for the Neuralink shares marketed for sale at a $7 billion (roughly Rs. 57,900 crore) valuation was just $500,000, according to the email seen by Reuters.

Sim Desai, chief executive of Hiive, an online platform where the shares are traded, said demand for Neuralink stock has been “tremendous.” He pegged the valuation that buyers are willing to pay at around $4.5 billion (roughly Rs. 37,200 crore).

Some biomedical experts are skeptical. Arun Sridhar, a scientist and entrepreneur who specializes in neuromodulation, called Neuralink’s valuation “bonkers” based on how early the brain implant is in its clinical development.

“A study to assess safety and tolerability is in no shape or form valid to justify a $5 billion (roughly Rs. 41,300 crore) valuation,” said Sridhar, who helped launch Galvani Bioelectronics, a developer of implants backed by GSK Plc and Alphabet Inc’s Verily Life Sciences. Galvani is not a competitor of Neuralink because its implants under development will be installed in an artery to the spleen to help treat rheumatoid arthritis, rather than the brain.

Investigations

The FDA initially rejected Neuralink’s request for a human trial last year, citing safety reasons, Reuters has reported. Even after securing approval, the company faces several challenges.

Neuralink has come under scrutiny from U.S. lawmakers after Reuters reported in May that its animal-research board may have violated conflict-of-interest regulations. Neuralink employees who sat on that board, which oversees the welfare of the animals that were being tested, also stood to benefit from the implant’s quick development. Neuralink stock that some of the employees hold has jumped around 150 percent in value in just two years, based on the secondary trades.

The law enforcement arm of the U.S. Department of Agriculture has been investigating Neuralink for potential animal-welfare violations. Neuralink staff told Reuters last year that the company was rushing and botching surgeries on monkeys, pigs and sheep, resulting in far more animal deaths than necessary, as Musk pressured staff to receive FDA approval.

The Department of Transportation is separately probing whether Neuralink illegally transported dangerous pathogens on chips removed from monkey brains without proper containment measures.

Neither Musk nor Neuralink have responded to multiple requests for comment on the probes or the Reuters reports.

© Thomson Reuters 2023
 


The Motorola Edge 40 recently made its debut in the country as the successor to the Edge 30 that was launched last year. Should you buy this phone instead of the Nothing Phone 1 or the Realme Pro+? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Moon’s Deepest Canyons Formed in Minutes by High-Speed Impact Debris

Published

on

By

Moon’s Deepest Canyons Formed in Minutes by High-Speed Impact Debris

Two colossal canyons on the moon, both deeper than the Grand Canyon, were formed in under ten minutes by surges of high-speed rock debris, as per reports. These valleys, named Vallis Schrödinger and Vallis Planck, extend for 270 kilometres and 280 kilometres, respectively, with depths of up to 3.5 kilometres. Comparatively, the Grand Canyon reaches a maximum depth of approximately 1.9 kilometres. The canyons are located near the Schrödinger impact basin in the lunar south polar region, an area marked by towering mountains and deep craters.

Impact that shaped the lunar landscape

According to the study published in Nature Communications, these canyons are part of several valleys that formed from the debris ejected during the impact that created Schrödinger basin, a 320-kilometre-wide crater formed around 3.81 billion years ago. The basin is positioned on the outer edge of the South Pole–Aitken basin, the moon’s largest and oldest remaining impact structure, which dates back more than 4.2 billion years.

Unprecedented energy levels behind the canyons

As per findings, rocky debris from the impact travelled at speeds ranging between 3,420 and 4,600 kilometres per hour. In comparison, a bullet from a 9mm handgun reaches speeds of about 2,200 kilometres per hour. The force required to carve these canyons is estimated to have been over 130 times greater than the total energy stored in the current global nuclear arsenal.

Key insights for future lunar exploration

Speaking to Space.com, David Kring, a geologist at the Lunar and Planetary Institute, highlighted that unlike the Grand Canyon, which was shaped by water over millions of years, these lunar canyons were formed in a matter of minutes by rock flows. The distribution of impact debris also suggests that astronauts landing near the South Pole–Aitken basin may find better access to some of the moon’s oldest geological samples. These insights contribute to ongoing research on potential landing sites for future lunar missions.

Continue Reading

Science

NASA Looks for Private Partners To Revive VIPER Moon Rover Mission

Published

on

By

NASA Looks for Private Partners To Revive VIPER Moon Rover Mission

NASA is inviting U.S. companies to collaborate on the Volatiles Investigating Polar Exploration Rover (VIPER), a mission initially halted due to budget constraints. Designed to search for water ice near the lunar south pole, VIPER was originally planned as a $450 million project. The agency had cancelled the mission in July 2024, citing cost-saving measures. Now, a fresh call has been made to private firms willing to take on the challenge of delivering the rover to the Moon, conducting exploration, and sharing scientific data. A final decision is expected in the coming months.

VIPER’s Role in Lunar Exploration

According to NASA’s announcement, VIPER was designed to support Artemis program objectives by locating potential water ice deposits. These resources are crucial for future human missions and lunar surface operations. Initially set to launch aboard the Griffin lander by Astrobotic Technology, the mission was shelved before its deployment. Following interest from private firms, NASA has decided to explore new avenues for its deployment while ensuring that the scientific goals remain intact.

Proposals and Selection Process

NASA officials have confirmed that responses from interested companies must be submitted by February 20, 2025. Selected candidates will be invited to provide more detailed proposals, with final selections anticipated by mid-year. The agency has clarified that while VIPER will be handed over in its current state, modifications involving dismantling its instruments for use on other spacecraft will not be permitted. Companies will be required to manage landing operations, conduct scientific research, and ensure data dissemination as part of the agreement.

Potential Benefits for Private Firms

In a statement in an official press release by NASA, Joel Kearns, Deputy Associate Administrator for Exploration in NASA’s Science Mission Directorate, stated that the partnership would provide significant opportunities for private firms looking to advance their lunar surface capabilities. He emphasised that VIPER’s deployment could mark a critical step toward commercial involvement in lunar exploration, reinforcing NASA’s commitment to fostering public-private collaborations.

Future of Lunar Resource Exploration

As NASA continues to push for sustainable lunar exploration, the integration of private-sector capabilities is seen as a key element in reducing costs and expanding mission possibilities. With lunar resource utilisation playing a major role in future space endeavours, the agency remains focused on ensuring that scientific objectives are met while advancing commercial lunar operations. The final selection of partners for VIPER is expected to set the stage for upcoming exploration missions and resource prospecting efforts on the Moon.

Continue Reading

Science

Microplastics Found in Human Brain Tissue, Study Shows Rising Levels

Published

on

By

Microplastics Found in Human Brain Tissue, Study Shows Rising Levels

Tiny plastic particles have been found in human brain tissue, raising concerns over their impact on health. Scientists have detected a significant increase in microplastics and nanoplastics (MNPs) in the brain over the past decades. The particles, commonly present in air, water, and food, have now been identified within human tissue, challenging previous assumptions about the brain’s protective barriers. Researchers are working to understand the long-term consequences of this plastic infiltration.

Rising Plastic Levels in Brain Tissue

According to the study published in Nature Medicine, 91 brain samples collected from individuals who died between 1997 and 2024 were analysed. Reports indicate a 50 percent increase in MNP concentrations from 2016 to 2024, with median levels rising from 3,345 micrograms per gram to 4,917 micrograms per gram. Andrew West, a neuroscientist at Duke University, told Science News that the sheer quantity of plastic detected was unexpected, stating that he didn’t believe it until he saw all the data.

Unexpected Particle Shapes and Sources

Findings suggest that the plastic particles are not uniform. Many were thin, sharp fragments rather than the engineered beads often studied in labs. Richard Thompson, a microplastic pollution expert at the University of Plymouth, told Science News that these plastics originate from everyday products such as grocery bags and bottles. Polystyrene, frequently used in medical and food industries, was found in lower amounts compared to polyethylene.

Higher MNP levels were found in the brains of 12 individuals diagnosed with dementia, but researchers have not confirmed a direct causal link. Some scientists speculate that neurological changes associated with dementia may increase plastic accumulation. Phoebe Stapleton, a toxicologist at Rutgers University, told Nature Medicine that further research is required to understand the biological impact, stating, that the next steps will be to understand what they are doing in the brain and how the body responds to them.

Continue Reading

Trending