Connect with us

Published

on

Elon Musk’s Neuralink received approval last week from the US Food and Drug Administration to conduct human clinical trials, which one former FDA official called “really a big deal.” I do not disagree, but I am skeptical that this technology will “change everything.” Not every profound technological advance has broad social and economic implications.

With Neuralink’s device, a robot surgically inserts a device into the brain that can then decode some brain activity and connect the brain signals to computers and other machines. A person paralyzed from the neck down, for example, could use the interface to manipulate her physical environment, as well as to write and communicate.

This would indeed be a breakthrough — for people with paralysis or traumatic brain injuries. For others, I am not so sure. For purposes of argument, as there are many companies working in this space, assume this technology works as advertised. Who exactly will want to use it?

One fear is that the brain-machine connections will be expensive and that only the wealthy will be able to afford them. These people will become a new class of “super-thinkers,” lording over us with their superior intellects.

I do not think that this scenario is likely. If I were offered $100 million for a permanent brain-computer connection, I would not accept it, if only because of fear of side effects and possible neurological damage. And I would want to know for sure that the nexus of control goes from me to the computer, not vice versa.

Besides, there are other ways of augmenting my intelligence with computers, most notably the recent AI innovations. It is true that I can think faster than I can speak or type, but — I’m just not in that much of a hurry. I would rather learn how to type on my phone as fast as a teenager does.

A related vision of direct brain-computer interface is that computers will be able to rapidly inject useful knowledge into our brains. Imagine going to bed, turning on your brain device, and waking up knowing Chinese. Sounds amazing — yet if that were possible, so would all sorts of other scenarios, not all of them benign, where a computer can alter or control our brains.

I also view this scenario as remote — unlike using your brain to manipulate objects, it seems true science fiction. Current technologies read brain signals but do not control them.

Another vision for this technology is that the owners of computers will want to “rent out” the powers of human brains, much the way companies rent out space today in the cloud. Software programs are not good at some skills, such as identifying unacceptable speech or images. In this scenario, the connected brains come largely from low-wage laborers, just as both social media companies and OpenAI have used low-wage labor in Kenya to grade the quality of output or to help make content decisions.

Those investments may be good for raising the wages of those people. Many observers may object, however, that a new and more insidious class distinction will have been created — between those who have to hook up to machines to make a living, and those who do not.

Might there be scenarios where higher-wage workers wish to be hooked up to the machine? Wouldn’t it be helpful for a spy or a corporate negotiator to receive computer intelligence in real-time while making decisions? Would professional sports allow such brain-computer interfaces? They might be useful in telling a baseball player when to swing and when not to.

The more I ponder these options, the more skeptical I become about large-scale uses of brain-computer interfaces for the non-disabled. Artificial intelligence has been progressing at an amazing pace, and it doesn’t require any intrusion into our bodies, much less our brains. There are always earplugs and some future version of Google Glass.

The main advantage of the direct brain-computer interface seems to be speed. But extreme speed is important in only a limited class of circumstances, many of them competitions and zero-sum endeavors, such as sports and games.

Of course, companies such as Neuralink may prove me wrong. But for the moment I am keeping my bets on artificial intelligence and large language models, which sit a comfortable few inches away from me as I write this. 

© 2023 Bloomberg LP


Samsung Galaxy A34 5G was recently launched by the company in India alongside the more expensive Galaxy A54 5G smartphone. How does this phone fare against the Nothing Phone 1 and the iQoo Neo 7? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

2,300-Year-Old Dwarf Statuette from Alexandria Reveals Ptolemaic Art Insights

Published

on

By

2,300-Year-Old Dwarf Statuette from Alexandria Reveals Ptolemaic Art Insights

A 2,300-year-old marble statuette discovered in Alexandria, Egypt, has offered new insights into how dwarves were perceived during the Ptolemaic period (332–150 B.C.). Depicting a muscular, nude dwarf in motion, the 4-inch sculpture reflects a combination of Egyptian and Greek artistic traditions. Despite missing its arms, legs, and part of the head, the craftsmanship of the piece indicates a highly skilled rendering of human anatomy. It is currently housed at the Metropolitan Museum of Art in New York City.

Depictions of Dwarves in Ptolemaic Art

According to information from the Metropolitan Museum of Art, as reported by Live Science, the statuette incorporates elements from Greek art, such as classical nudity and Hellenistic realism, blended with Egyptian cultural aesthetics. This synthesis points to the cultural exchange that characterised the Ptolemaic dynasty, a period when Egypt was ruled by Ptolemy I Soter, a general of Alexander the Great. The depiction of a dwarf engaged in dance suggests a significant societal role, unlike the exaggerated caricatures of dwarves often seen in Greek art.

Egyptian Perspectives on Dwarves

Historical records indicate that dwarves were highly regarded in ancient Egypt, often serving in the households of nobles and pharaohs. Their association with the god Bes, who was depicted as a short and muscular protector of families and women in childbirth, contributed to their societal acceptance. Bes, known as a dancer and tambourine player, symbolises strength and guardianship in Egyptian mythology. The statuette’s design, which likely depicted the dwarf with a percussion instrument, aligns with this cultural significance.

A Glimpse into Cultural Integration

The artifact demonstrates the integration of different human forms into Egyptian society during the Ptolemaic era. The Met has emphasised that such depictions reflect a broader tradition of valuing diverse body types, setting the Egyptian approach apart from other ancient civilisations. This statuette, though small in size, offers a profound understanding of cultural dynamics during a transformative period in history.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Lunar Temperature Fluctuations: Understanding the Moon’s Extreme Conditions

Published

on

By

Lunar Temperature Fluctuations: Understanding the Moon's Extreme Conditions

The surface temperature of the moon experiences extreme variations, making it one of the harshest environments in the solar system. During lunar daylight, temperatures can soar to over 100 degrees Celsius, while in darkness, they can plummet to minus 100 degrees Celsius. These fluctuations are caused by the absence of an atmosphere, which on Earth moderates temperature extremes. Instead, the moon’s surface directly absorbs and radiates heat depending on exposure to sunlight.

Lunar Temperature Variations Explained

According to data provided by NASA and analysed by experts, such as John Monnier, a professor of astronomy at the University of Michigan, the moon’s soil, or regolith, significantly influences these temperature shifts. Regolith is a poor conductor of heat, causing rapid temperature changes on the surface while insulating the subsurface. As reported by Live Science, during Apollo missions, measurements indicated that temperatures beneath the surface were warmer by 40 to 45 kelvins compared to the lunar exterior.

Further research using NASA’s Lunar Reconnaissance Orbiter (LRO), launched in 2009, revealed localised thermal anomalies. Findings in 2022 demonstrated that shaded areas within certain lunar pits maintained a consistent temperature of 17 degrees Celsius. These regions are considered promising for future human habitation.

The Moon’s Poles and Extreme Conditions

The lunar poles present unique thermal environments due to the sun’s low angle. Permanently shadowed craters, particularly at the south pole, may host temperatures as low as minus 248.15 degrees Celsius. These craters are shielded not only from direct sunlight but also from secondary heat sources, such as reflected solar radiation. Such locations could hold trapped ice particles, potentially vital for sustaining future lunar exploration missions.

Understanding the moon’s thermal dynamics is essential for designing equipment capable of withstanding its conditions and planning potential settlements. Scientists and engineers continue to study these extremes to ensure that future missions can navigate and thrive in the lunar environment.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

SpaceX Launches 24 Starlink Satellites to Expand Global Internet Coverage

Published

on

By

SpaceX Launches 24 Starlink Satellites to Expand Global Internet Coverage

The first Starlink mission of 2025 was successfully launched by SpaceX from Florida’s Cape Canaveral Space Force Station on January 6, 2025, at 2:13 a.m. IST. A Falcon 9 rocket carried 24 Starlink satellites into orbit, aiming to expand SpaceX’s vast satellite internet network. The launch marked another significant step in SpaceX’s efforts to enhance global connectivity through its growing constellation of satellites.

Details of the Mission

According to a report from space.com, the Falcon 9 rocket’s first stage completed a flawless return to Earth, landing on the droneship “Just Read the Instructions,” positioned in the Atlantic Ocean. This milestone represented the 17th launch and recovery for this particular booster. SpaceX confirmed that this booster has supported 10 prior Starlink missions and was used in the Crew-5 mission, which transported astronauts to the International Space Station.

The upper stage of the rocket is expected to deploy the 24 satellites into low Earth orbit approximately 65 minutes after liftoff. These satellites will join the more than 6,850 active Starlink spacecraft currently operating, as stated to space.com by astrophysicist Jonathan McDowell, who tracks satellite constellations.

Starlink, developed by SpaceX, is the largest satellite network in history. Its purpose is to deliver high-speed internet access globally, including remote and underserved areas. With launches like this, the constellation continues to grow, reinforcing SpaceX’s position as a leader in satellite-based internet services. This launch follows a year of record-breaking achievements for SpaceX, which conducted numerous successful missions in 2024. The company remains focused on accelerating its deployment of satellites, with regular launches planned throughout 2025.

As SpaceX continues its Starlink initiative, its impact on global connectivity and advancements in reusable rocket technology remain noteworthy. The company’s commitment to innovation in space exploration is expected to shape the future of satellite communications.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending