Connect with us

Published

on

Indian Space Research Organisation has decided not to rush its Gaganyaan project, the manned mission to space, as it wants to ensure that the country’s first human space flight is a ‘sure shot safe mission’, said its chairman S Somanath here on Thursday.

Gaganyaan was set to launch in 2022 but due to COVID-19 there was an inordinate delay, Somanath told reporters during the international conference on Spacecraft Mission Operations (SMOPS-2023).

“We have a different thinking now. Our thinking is like this that we don’t want to rush. That decision we have taken. The primary objective of the human space flight is a sure shot safe mission,” the ISRO chief said.

The space agency has redefined the mission in such a way that it will achieve success in the very first attempt. For this, it has enhanced the testing and demonstration mission substantially in recent times. These exercises involve additional abort missions to ensure the safety of the crew, he explained.

According to Somanath, the first exercise will probably happen in August, which was earlier planned in July.

“So, two abort missions have to take place this year followed by an unmanned mission possibly by the beginning of next year,” the ISRO chairman said.

The space scientist said all the engine test programmes have been completed within ISRO.

Stating that hectic activities are taking place, Somanath said every week at least some major tests are happening.

“For me, eight major tests are there and if all the tests successfully happen without any glitch, the launch will between 2024 and 2025 time frame. But if I face problems and challenges, which are natural in this process, I have to discount for the schedule,” he added.

About India’s first solar mission, Aditya-L1, Somanath said the launch window is August this year to January next year.

“If we cannot launch it in August then we will go to next year January,” he added.

Regarding Chandrayaan-3, ISRO’s third moon mission, Somanath said it is due to be launched in mid July. ISRO will follow the same process that was adopted during the Chandrayaan-2 mission, he said.

“We are going in the same path of Chandrayaan-2 because we have already done that. We have experience to do it in that manner but it all depends on various other factors whether there are any other contingency conditions,” Somanath said, adding, “The landing flight is just the same as previously. No change.” To a query on how indigenous Chandrayaan-3 is, the ISRO chairman said, “What we are doing in ISRO is 100 per cent indigenous. We are not buying anything from anybody to do it but of course we buy some components such as electronic chips, processors, some high-end devices, but we don’t buy Chandrayaan lander from anybody.” 


The Motorola Edge 40 recently made its debut in the country as the successor to the Edge 30 that was launched last year. Should you buy this phone instead of the Nothing Phone 1 or the Realme Pro+? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA Scientists Study Crystal Formation in Space For Future Applications

Published

on

By

NASA Scientists Study Crystal Formation in Space For Future Applications

NASA scientists have been studying crystals to optimise the process of crystallisation for decades. Various researchers have conducted research on crystals within the first quarter of the year, the latest being protein crystallisation in microgravity. Alexandra Ros from Arizona State University led the research by launching a protein crystallisation test in the International Space Station (ISS). The experiments are meant to determine the growth of protein crystals in space using newly developed microfluid devices. The research agenda is to examine whether space-grown crystals can achieve better quality than those formed on Earth.

What is Crystallisation, & How Does It Impact Our Lives?

It is the process of freezing of liquid or molten materials in the form of highly organised molecules called crystals. These crystals can be a blend of different types of materials. This world consists of crystal examples everywhere. It would be wrong to say that we don’t live in a world of crystals.

Be it a coffee mug, cellphone or silicon that is used to form the brains of electronics and used in memory chips, everything is a result of crystallisation. Other types of semiconductor crystals are used as detectors for different radiations, such as gamma rays, infrared rays, etc. Lasers used in scanning the product are made of optical crystals. Turbine blades are an example of metal crystals used in the jet engine.

Why and How NASA Studies Crystals?

The scientists studied the growth of zinc selenide crystals in space, with the crystals on Earth, explained NASA. The result from the observations marked the way for the improvement of the operations of infrared wavelength in the high powered lasers. The research findings provide an insight into the strong influence of gravity on the electrical, optical and structural characteristics of the crystals.

Researchers have optimised the crystal usage for several years to study the types of crystals for growing in space.

The crystals grown on Earth have defects such as little cracks; these cracks can damage the properties of the crystals. This marks a strong reason why scientists want to study crystals in space, thus getting a complete microgravitational environment where they can grow better. Convection produced due to the presence of the gravitational force degrades the quality of crystals.

However, this convection is not seen in the environment of microgravity, helping in the better quality crystals. The ISS is now converted to a complete lab for the study of the formation of crystals, which can be further applied in technology and medicine.

Continue Reading

Science

Missing Non-Dark Matter Might Be Hidden Within Hydrogen Gas Clouds

Published

on

By

Missing Non-Dark Matter Might Be Hidden Within Hydrogen Gas Clouds

It is observed that about half of the matter cannot be occupied just by stars and galaxies. Scientists say that hydrogen gas clouds could unveil it. Missing matter of the universe may have finally been detected. It is reported by the astronomers that the stuff revealed and not dark matter accounts for only 15 percent of the total mass of the universe. For years, scientists have rushed into a problem, and they have not been able to find even about half of the normal matter in the galaxies, stars, and other space structures that can be seen.

Research and Discovery

At present, a large international team of researchers led by Simone Ferraro from the University of California, Berkeley, concluded that the hydrogen gas cloud that surrounds most galaxies is more extensive than previously realised by scientists. The extensiveness is so high that it could even be responsible for most of the universe’s missing matter, according to the study, which is published in the online pre-print journal arXiv.

The hunt for the Missing Matter

The researchers used data from the Dark Energy Spectroscopic Instrument (DESI) for the investigation. With this instrument, the team piled images of approx. 7 million galaxies for measuring the mild halos of ionised hydrogen gas at the edges of the galaxies, which cannot be observed by normal methods. So the team analysed the remaining radiation from the Big Bang that is widespread throughout the cosmos. If these faint halos connect the other galaxies, there will be a cosmic web spanning far and will account for the undetected matter in the past.

Black Holes on Duty

This discovery may also change the perspective on the black hole behaviour. Scientists at first thought that blackholes forced out a high volume of gases early in their life cycle. At present, the study says that these black holes are much more frequent in action than earlier thought. Boryana Hadzhiyska, an astronomer, said in the statement that one of the hypothetical theories is that the black holes switch on and off in their duty cycle.

Future Scope

The next step is to use new measurements in existing universe models. Hadzhiyska said, there are many people interested in using our measurements for doing a thorough analysis, including this missed gas.

Continue Reading

Science

Researchers Find Microplastics in Caddisfly Casings From the 1970s

Published

on

By

Researchers Find Microplastics in Caddisfly Casings From the 1970s

An expert team of biologists practising at the Naturalis Biodiversity Centre, a research museum in the Netherlands, has recently discovered evidence of the incorporation of microplastics into caddisfly casings. However, what’s even more interesting is that the use of these microplastics for building the casings has been progressing from as far back as the 1970s. This breaks the traditional understanding of how far back the impact of microplastics goes. If the research is to be believed, microplastics began damaging the environment half a century ago.

What is a Caddisfly?

As per a study published in the journal Science of the Total Environment, this team of biologists exemplified the discovery of microplastics in larval casings at the museum. A caddisfly is a moth-like insect that is found near freshwater habitats like lakes and streams. These are found in most countries across the world. Caddisflies make their home near freshwater streams and deposit their eggs in the form of jelly. Once the larva hatches, cladissfly begin to incorporate materials from their surroundings to protect themselves from predators.

How was the Discovery made?

The discovery commenced when something colourful was witnessed on one larva casing by one of the team members of the biologists. Further investigation confirmed that the colourful component on the larva was microplastic. With this discovery, the biologists decided to observe the other 549 casings from their collection over several decades. As a result of their study, many casings were found to have microplastics on them.

To elaborate further, one of the casings from the year 1986 had multiple blue colored microplastics. Likewise, another casing, dated back to 1971, possessed yellow plastic.

The Researcher’s Perspective

Post-discovering microplastics on cladissfly casing, the researchers suggest that the contamination of the environment has been going on for at least half a century. Significantly, they have proposed the possibility of other species being impacted by the same.

The microplastics present on the casings are compromising the safety of claddisflies as they increase visibility, which raises the chances of getting noticed by the predators. Natural materials used in building casing are being dominated by these microplastics. These factors are putting these creatures at great risk of being found and eaten by fish and birds.

Continue Reading

Trending