Connect with us

Published

on

Data collected by an observatory in Antarctica has produced our first view of the Milky Way galaxy through the lens of neutrino particles. It’s the first time we have seen our galaxy “painted” with a particle, rather than in different wavelengths of light.

The result, published in Science, provides researchers with a new window on the cosmos. The neutrinos are thought to be produced, in part, by high-energy, charged particles called cosmic rays colliding with other matter. Because of the limits of our detection equipment, there’s much we still don’t know about cosmic rays. Therefore, neutrinos are another way of studying them.

It has been speculated since antiquity that the Milky Way we see arching across the night sky consists of stars like our Sun. In the 18th century, it was recognised to be a flattened slab of stars that we are viewing from within. It is only 100 years since we learnt that the Milky Way is in fact a galaxy, or “island universe”, one among a hundred billion others.

In 1923, the American astronomer Edwin Hubble identified a type of pulsating star called a “Cepheid variable” in what was then known as the Andromeda “nebula” (a giant cloud of dust and gas). Thanks to the prior work of Henrietta Swan Leavitt, this provided a measure of the distance from Earth to Andromeda.

This demonstrated that Andromeda is a far away galaxy like our own, settling a long-running debate and completely transforming our notion of our place in the universe.

Opening windows

Subsequently, as new astronomical windows have opened on to the sky, we have seen our galactic home in many different wavelengths of light –- in radio waves, in various infrared bands, in X-rays and in gamma-rays. Now, we can see our cosmic abode in neutrino particles, which have very low mass and only interact very weakly with other matter – hence their nickname of “ghost particles”.

Neutrinos are emitted from our galaxy when cosmic rays collide with interstellar matter. However, neutrinos are also produced by stars like the Sun, some exploding stars, or supernovas, and probably by most high-energy phenomena that we observe in the universe such as gamma-ray bursts and quasars. Hence, they can provide us an unprecedented view of highly energetic processes in our galaxy – a view that we can’t get from using light alone.

The new breakthrough detection required a rather strange “telescope” that is buried several kilometres deep in the Antarctic ice cap, under the South Pole. The IceCube Neutrino Observatory uses a gigatonne of the ultra-transparent ice under huge pressures to detect a form of energy called Cherenkov radiation.

This faint radiation is emitted by charged particles, which, in ice, can travel faster than light (but not in a vacuum). The particles are created by incoming neutrinos, which come from cosmic ray collisions in the galaxy, hitting the atoms in the ice.

Cosmic rays are mainly proton particles (these make up the atomic nucleus along with neutrons), together with a few heavy nuclei and electrons. About a century ago, these were discovered to be raining down on the Earth uniformly from all directions. We do not yet definitively know all their sources, as their travel directions are scrambled by magnetic fields that exist in the space between stars.

Deep in the ice

Neutrinos can act as unique tracers of cosmic ray interactions deep in the Milky Way. However, the ghostly particles are also generated when cosmic rays hit the Earth’s atmosphere. So the researchers using the IceCube data needed a way to distinguish between the neutrinos of “astrophysical” origin – those originating from extraterrestrial sources – and those created from cosmic ray collisions within our atmosphere.

The researchers focused on a type of neutrino interaction in the ice called a cascade. These result in roughly spherical showers of light and give the researchers a better level of sensitivity to the astrophysical neutrinos from the Milky Way. This is because a cascade provides a better measurement of a neutrino’s energy than other types of interactions, even though they they are harder to reconstruct.

Analysis of ten years of IceCube data using sophisticated machine learning techniques yielded nearly 60,000 neutrino events with an energy above 500 gigaelectronvolts (GeV). Of these, only about 7% were of astrophysical origin, with the rest being due to the “background” source of neutrinos that are generated in the Earth’s atmosphere.

The hypothesis that all the neutrino events could be due to cosmic rays hitting the Earth’s atmosphere was definitively rejected at a level of statistical significance known as 4.5 sigma. Put another way, our result has only about a 1 in 150,000 chance of being a fluke.

This falls a little short of the conventional 5 sigma standard for claiming a discovery in particle physics. However, such emission from the Milky Way is expected on sound astrophysical grounds.

With the upcoming enlargement of the experiment – IceCube-Gen2 will be ten times bigger – we will acquire many more neutrino events and the current blurry picture will turn into a detailed view of our galaxy, one that we have never had before.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Published

on

By

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Reports indicate that for three days this summer – July 9, July 22 and August 5 – Earth’s rotation will speed up slightly, trimming 1.3 to 1.5 milliseconds off each day. Imperceptible in everyday life, this shift underscores how the Moon’s position influences our planet’s spin. For reference, the shortest day on record was July 5, 2024, lasting 1.66 milliseconds less than 24 hours. Over billions of years Earth’s rotation has slowly lengthened, but recent data show speedups. Scientists say monitoring these tiny changes is important for understanding Earth’s dynamics and timekeeping.

Causes of Faster Spin

According to timeanddate.com, the shortest-ever recorded day was on July 5, 2024, which was 1.66 milliseconds shy of 24 hours. The acceleration is largely driven by the Moon’s gravity. On those dates (July 9, July 22 and August 5), the Moon will lie far north or south of Earth’s equator, weakening its tidal braking on our planet’s spin. As a result, Earth rotates a bit faster – like spinning a top held at its ends. Seasonal shifts in mass distribution also affect rotation. Richard Holme of the University of Liverpool notes that summer growth and melting snow in the Northern Hemisphere move mass outward from Earth’s axis, slowing the spin in the same way an ice skater slows by extending her arms.

Timekeeping and Technology

Shifts in day length are handled by precise timekeeping. The International Earth Rotation and Reference Systems Service (IERS) monitors Earth’s spin and adds leap seconds to keep Coordinated Universal Time (UTC) in sync with solar time. Normally a second is added when Earth’s rotation slows, but if the spin-up trend continues, scientists have floated a “negative leap second” – removing a second – to realign clocks.

Dr. Michael Wouters of Australia’s National Measurement Institute says this fix would be unprecedented, and notes that even if a few seconds accumulated over decades, it would likely go unnoticed. Dr. David Gozzard of the University of Western Australia points out that GPS satellites, communications networks and power grids rely on atomic clocks synced to nanoseconds, and that millisecond-scale changes in Earth’s rotation are easily absorbed by these systems.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Unpacked 2025: Galaxy Z Flip 7 Launched in India With 4.1-Inch Cover Screen, Exynos 2500 SoC



The Last of Us Part 2 Remastered Gets New Free Update That Allows Players to Experience Story Chronologically

Continue Reading

Science

James Webb Telescope Spots Rare ‘Cosmic Owl’ Formed by Colliding Galaxies

Published

on

By

James Webb Telescope Spots Rare ‘Cosmic Owl’ Formed by Colliding Galaxies

NASA’s James Webb Space Telescope has captured the “Cosmic Owl,” a startling owl-faced pair of colliding ring galaxies. This double-ring structure is exceptionally rare: ring galaxies account for just 0.01% of known galaxies, and two colliding rings is almost unheard of. The JWST image provides an exceptional natural laboratory for studying galaxy evolution. Models suggest the galactic clash began roughly 38 million years ago, meaning the owl-like shape could persist for a long time. A team led by Ph.D. student Mingyu Li of Tsinghua University in China announced the finding.

Spotting the ‘Cosmic Owl’

According to Mingyu Li, the first author of the new study , he and his team found the Owl by combing through public JWST data from the COSMOS field. The twin ring galaxies jumped out thanks to JWST’s infrared imaging. Each ring is about 26,000 light-years across (a quarter of the Milky Way), and each harbors a supermassive black hole at its core – one of the Owl’s eyes.

JWST images show the collision interface – the Owl’s beak – ablaze with activity. ALMA observations find a huge clump of molecular gas there – the raw fuel for new stars – being squeezed by the impact. Radio observations show a jet from one galaxy’s black hole slamming into the gas. Li notes the shockwave-plus-jet have ignited an intense starburst, turning the beak into a stellar nursery.

Rarity and Significance

Ring galaxies are extremely rare (≈0.01% of all galaxies), so finding two in collision is unheard of. Another team independently identified the same system and called it the “Infinity Galaxy”. Li says this event is an exceptional natural laboratory for studying galaxy evolution. In one view, researchers can see black holes feeding, gas compressing and starbursts happening together.

Li points out the collision’s shockwave and jet have triggered an intense starburst in the beak. He says this may be a crucial way to turn gas into stars rapidly, which could help explain how young galaxies built up their mass so quickly. Simulations will clarify the precise collision conditions needed to produce such a rare twin-ring “owl” shape.

Continue Reading

Science

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

Published

on

By

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

The use of conventional robots for industry and hazardous environments is easy for the purpose of control and modelling. However, these are too rigid to operate in confined places and uneven terrain. The soft bio-related roots are better adapted to the environment and manoeuvring in inaccessible places. Such flexible capabilities would need an array of on-board sensors and spacious models which are tailored to each robot design. Having a new and less resource-demanding approach, the researchers at MIT have developed a far less complex, deep learning control system that teaches the soft, bio-inspired robots to follow the command from a single image only.

Soft Robots Learn from a Single Image

As per Phys.org, this research has been published in the journal Nature, by training a deep neural network on two to three hours of multi-view images of various robots executing random commands, the scientists trained the network to reconstruct the range and shape of mobility from only one image. The previous machine learning control designs need customised and costly motion systems. Lack of a general-purpose control system limited the applications and made prototyping less practical.

The methods unshackle the robotics hardware design from the ability to model it manually. This has dictated precision manufacturing, extensive sensing capabilities, costly materials and reliance on conventional and rigid building blocks.

AI Cuts Costly Sensors and Complex Models

The single camera machine learning approach allows the high-precision control in tests on a variety of robotic systems, adding the 3D-printed pneumatic hand, 16-DOF Allegro hand, a soft auxetic wrist and a low-cost Poppy robot arm.

As this system depends on the vision alone, it might not be suitable for more nimble tasks which need contact sensing and tactile dynamics. The performance may also degrade in cases where visual cues are not enough.

Researchers suggest the addition of sensors and tactile materials that can enable the robots to perform different and complex tasks. There is also potential to automate the control of a wider range of robots, together with minimal or no embedded sensors.

Continue Reading

Trending