Connect with us

Published

on

Data collected by an observatory in Antarctica has produced our first view of the Milky Way galaxy through the lens of neutrino particles. It’s the first time we have seen our galaxy “painted” with a particle, rather than in different wavelengths of light.

The result, published in Science, provides researchers with a new window on the cosmos. The neutrinos are thought to be produced, in part, by high-energy, charged particles called cosmic rays colliding with other matter. Because of the limits of our detection equipment, there’s much we still don’t know about cosmic rays. Therefore, neutrinos are another way of studying them.

It has been speculated since antiquity that the Milky Way we see arching across the night sky consists of stars like our Sun. In the 18th century, it was recognised to be a flattened slab of stars that we are viewing from within. It is only 100 years since we learnt that the Milky Way is in fact a galaxy, or “island universe”, one among a hundred billion others.

In 1923, the American astronomer Edwin Hubble identified a type of pulsating star called a “Cepheid variable” in what was then known as the Andromeda “nebula” (a giant cloud of dust and gas). Thanks to the prior work of Henrietta Swan Leavitt, this provided a measure of the distance from Earth to Andromeda.

This demonstrated that Andromeda is a far away galaxy like our own, settling a long-running debate and completely transforming our notion of our place in the universe.

Opening windows

Subsequently, as new astronomical windows have opened on to the sky, we have seen our galactic home in many different wavelengths of light –- in radio waves, in various infrared bands, in X-rays and in gamma-rays. Now, we can see our cosmic abode in neutrino particles, which have very low mass and only interact very weakly with other matter – hence their nickname of “ghost particles”.

Neutrinos are emitted from our galaxy when cosmic rays collide with interstellar matter. However, neutrinos are also produced by stars like the Sun, some exploding stars, or supernovas, and probably by most high-energy phenomena that we observe in the universe such as gamma-ray bursts and quasars. Hence, they can provide us an unprecedented view of highly energetic processes in our galaxy – a view that we can’t get from using light alone.

The new breakthrough detection required a rather strange “telescope” that is buried several kilometres deep in the Antarctic ice cap, under the South Pole. The IceCube Neutrino Observatory uses a gigatonne of the ultra-transparent ice under huge pressures to detect a form of energy called Cherenkov radiation.

This faint radiation is emitted by charged particles, which, in ice, can travel faster than light (but not in a vacuum). The particles are created by incoming neutrinos, which come from cosmic ray collisions in the galaxy, hitting the atoms in the ice.

Cosmic rays are mainly proton particles (these make up the atomic nucleus along with neutrons), together with a few heavy nuclei and electrons. About a century ago, these were discovered to be raining down on the Earth uniformly from all directions. We do not yet definitively know all their sources, as their travel directions are scrambled by magnetic fields that exist in the space between stars.

Deep in the ice

Neutrinos can act as unique tracers of cosmic ray interactions deep in the Milky Way. However, the ghostly particles are also generated when cosmic rays hit the Earth’s atmosphere. So the researchers using the IceCube data needed a way to distinguish between the neutrinos of “astrophysical” origin – those originating from extraterrestrial sources – and those created from cosmic ray collisions within our atmosphere.

The researchers focused on a type of neutrino interaction in the ice called a cascade. These result in roughly spherical showers of light and give the researchers a better level of sensitivity to the astrophysical neutrinos from the Milky Way. This is because a cascade provides a better measurement of a neutrino’s energy than other types of interactions, even though they they are harder to reconstruct.

Analysis of ten years of IceCube data using sophisticated machine learning techniques yielded nearly 60,000 neutrino events with an energy above 500 gigaelectronvolts (GeV). Of these, only about 7% were of astrophysical origin, with the rest being due to the “background” source of neutrinos that are generated in the Earth’s atmosphere.

The hypothesis that all the neutrino events could be due to cosmic rays hitting the Earth’s atmosphere was definitively rejected at a level of statistical significance known as 4.5 sigma. Put another way, our result has only about a 1 in 150,000 chance of being a fluke.

This falls a little short of the conventional 5 sigma standard for claiming a discovery in particle physics. However, such emission from the Milky Way is expected on sound astrophysical grounds.

With the upcoming enlargement of the experiment – IceCube-Gen2 will be ten times bigger – we will acquire many more neutrino events and the current blurry picture will turn into a detailed view of our galaxy, one that we have never had before.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

James Webb Space Telescope Reveals a Stunning Einstein Ring in Hydrus

Published

on

By

James Webb Space Telescope Reveals a Stunning Einstein Ring in Hydrus

James Webb Space Telescope has recently captured a detailed image of an unusual cosmic occurrence. The latest images released by European Space Agency shows a glowing ring in the depths of space. It also reveals an effect that is caused by a massive galaxy bending light from another galaxy hidden behind it. The phenomenon has been recorded in the constellation Hydrus. It has been observed that light from the background galaxy forms a ring due to gravitational bending.

Formation of the Einstein Ring

According to the European Space Agency and the Canadian Space Agency the sight captured is known as an Einstein ring. It was reported that the effect is caused when a massive object bends light from another galaxy located behind it. The report further highlights that the foreground galaxy shown in the images belongs to a cluster known as SMACSJ0028.2-7537. The light from a distant spiral galaxy is being curved by the gravitational pull of the elliptical galaxy in front.

As per the official statement from ESA, the effect is a classic case of Albert Einstein’s theory of general relativity. The agency highlighted that the large objects in space can warp space-time, which in turn, forces light to travel around them in curved paths. The report further mentioned that when the observer, the light source and the massive object align perfectly, the light appears as a full ring.

Significance of Gravitational Lensing

The image was shared as part of the March picture of the month initiative by the space agencies. The images were capture using the Near Infrared Camera instrument on the James Webb Space Telescope with the help of Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys.

It is also reported that such lensing phenomena assist astronomers in studying distant galaxies that would otherwise be too faint to observe. The ESA further noted that the magnification effect helps reveal the structure and composition of galaxies that existed shortly after the Big Bang

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Scientists Spot a Key Difference in Matter and Antimatter Decay



Two New Exoplanets Found Orbiting a Star in Draco Constellation

Related Stories

Continue Reading

Science

NASA Astronaut Zena Cardman Appointed to Lead SpaceX Crew-11 Mission to ISS

Published

on

By

NASA Astronaut Zena Cardman Appointed to Lead SpaceX Crew-11 Mission to ISS

NASA astronaut Zena Cardman has been appointed to lead the upcoming SpaceX Crew-11 mission to the International Space Station (ISS). The mission is scheduled for launch in July. Cardman will take command of the four-member crew following her removal from a previous mission last year. She will be accompanied by Pilot Mike Fincke from NASA, Mission Specialist Kimiya Yui from Japan Aerospace Exploration Agency (JAXA) and Mission Specialist Oleg Platonov from the Russian space agency Roscosmos. Crew-11 will transport the team to the orbiting laboratory for an extended stay.

Crew Composition and Mission Details

According to an announcement by NASA officials, Cardman’s appointment to Crew-11 comes after her removal from SpaceX’s Crew-9 mission in August last year. That decision had been taken to accommodate NASA astronauts Barry Wilmore and Sunita Williams for their return to Earth following technical issues faced by Boeing’s Starliner capsule. These issues included thruster problems and helium leaks during its test flight to the ISS. The Starliner spacecraft had been returned without crew in September after safety concerns were raised.

Astronaut Experience and Background

As per NASA’s official statement, the Crew-11 mission will mark the first spaceflight experience for both Cardman and Platonov. Cardman had been selected by NASA in 2017. Platonov had been selected by Roscosmos in 2018. Mike Fincke, who will serve as the pilot, has already completed three space missions. He has spent a total of 382 days aboard the ISS during expeditions in 2004, 2008 and 2011. Kimiya Yui had served as a flight engineer during ISS Expeditions 44 and 45. He had remained aboard the station for 142 days from 2014 to 2015.

Changes Following Starliner Mission

According to reports, Cardman and astronaut Stephanie Wilson were removed from the Crew-9 assignment when NASA altered plans to facilitate the safe return of Starliner’s crew. Wilson’s reassignment has not been announced yet. Mike Fincke was earlier assigned to Boeing’s Starliner-1 mission. The launch date for Starliner-1 remains uncertain due to unresolved issues from previous flights. The Crew-11 mission is now expected to provide NASA with continued crew presence on the ISS. It will support ongoing research and operations.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


X-Class Solar Flare From Emerging Sunspot Causes Radio Blackouts



444-Million-Year-Old Inside-Out Fossil Without Head And Legs Found In South Africa

Related Stories

Continue Reading

Science

444-Million-Year-Old Inside-Out Fossil Without Head And Legs Found In South Africa

Published

on

By

444-Million-Year-Old Inside-Out Fossil Without Head And Legs Found In South Africa

Fossils of a 444 million-year-old marine creature, which is preserved in an unusual state, have been unearthed in South Africa. The remains belong to an extinct species of arthropod that lived long before dinosaurs, claims a new study. The fossils, which were discovered nearly 250 miles north of Cape Town in the Cederberg Mountains, shows an inside-out preservation technique. This means that the the soft tissues, such as muscles and guts, survived but the hard outer shell and limbs did not. This rare preservation offers a glimpse into ancient marine life and environments that existed during the Late Ordovician period.

Fossil Findings and Preservation

According to the study published in the journal Papers in Palaeontology, researchers have identified the specimens of the recently discovered fossils to be known as Keurbos susanae. The fossils were found in the Soom Shale, a geological formation recognised for preserving soft-bodied fossils. The researchers stated that the remains had been preserved without their shell and head while internal features like muscles and intestines remained intact. It has been reported that the species possibly lived in oxygen-deficient waters high in dissolved hydrogen sulphide which may have contributed to the unique preservation of soft tissues.

Challenges in Fossil Interpretation

Lead researcher Dr Sarah Gabbott, a Palaeontologist at the University of Leicester, told Live Science that the fossil was described as an “inside-out, legless, headless wonder”. She mentioned that muscles, tendons and even guts had been mineralised in remarkable detail while the outer shell and legs were missing due to decay. According to the report, the fossil dates back to a period when nearly 85 percent of marine life was wiped out by a mass extinction event. The absence of the exoskeleton has made it difficult for scientists to establish evolutionary links with other species from that time.

Limited Prospects of Further Discoveries

It has been reported that the fossil site where Keurbos susanae was discovered has been buried due to quarrying activity. Dr Gabbott mentioned that she had searched for additional specimens over the past two decades, but no new examples had been found. The species was named after her mother, Sue, who had encouraged her to pursue a career that brought her happiness. The research team noted that unless new specimens surface, the evolutionary significance of Keurbos susanae may remain unresolved.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


X-Class Solar Flare From Emerging Sunspot Causes Radio Blackouts



Poco M7 Pro Review: Pro Value, Practical Performance

Continue Reading

Trending