In 2012, Rafael de Mestre did something nobody else ever had – he drove around the world in an electric car, an original Tesla Roadster. And now, he’s driving around the world solo again in that same Roadster as a promotional and scouting tour and to recruit other teams to join him for yet another circumnavigation in 2024.
We got a chance to talk to him about his story when he stopped by for a charge during his second solo circumnavigation.
An IT consultant by trade, de Mestre was born in Catalunya and grew up in Germany. Early in his life, he remembers seeing the Citroen DS 21 and really liking it – except for the smell. He asked, why does it need to be so smelly? Isn’t it just going to make everything smelly? The adults told him no, there’s plenty of air; it won’t be a problem.
He wonders, now, what things might have been like if the adults had listened to him. And now, he’s driving around the world – again – to show that all of us can stop stinking up the air without sacrificing mobility, even on the longest and harshest routes.
Past round-the-world trips
The first trip around the world in an EV was in a time before there were many electric car chargers installed anywhere – and certainly no DC fast chargers yet, either. But de Mestre likes to say, “Wherever there is light burning, you can charge your car.” The point is that charging stations are far more available than most people think, and an EV can be charged anywhere that there’s electricity, which covers most of the world (he also saved his charging points in the Electromaps app).
It started as somewhat of a personal challenge – de Mestre had planned in 2013 to be the first to drive around the world once he took delivery of his Model S. However, in February 2012, a Citroen C-Zero took off from Strasbourg, piloted by two French drivers. Deciding he couldn’t let the duo beat him, de Mestre hastily planned a journey and set out from his native Catalunya in the electric car he had available, a Tesla Roadster, hoping to overtake the French team.
Over the next few months, the “race” took the two electric cars across Europe, the US, the Gobi desert, Kazakhstan, the Ural mountains, and Russia. In September, just a few weeks before the end of the trip, de Mestre managed to pass the Citroen and finished the journey around the world as the first electric car to ever make the trip.
Somehow, he found a way to off-road in San FranciscoAn EV making a splash in Kazakhstan in 2012
The whole thing took 127 days – more than the 80 that de Mestre had hoped for, but given the limited time for planning visas and shipping across oceans (and a crash just 600 miles before the finish line), it’s not so bad for a first time out.
In 2016, de Mestre and 10 other teams completed a similar trip but this time with a greater variety of cars and more charger support. That trip involved one Roadster, eight Model S, one Denza, and one electric bus from the Hungarian company Modulo. And this time, they completed it in the planned 80 days.
Another trip was planned for 2020, but needless to say, travel was a bit more difficult that year. So that trip was pushed back and will now occur next year, in 2024.
Current solo circumnavigation – scouting for 2024
In advance of that trip, de Mestre has started on another solo world tour, scouting routes and locations for next year and looking for potential supporters or teams to recruit and join the trip. If you’re interested, check out 80edays to suggest stops or to express interest in becoming a team. It’s not cheap or easy, though; he’s looking for serious applicants.
You can track his location during this trip around the world, which has so far passed through most of the US – with a trip up the west coast remaining – and then will continue through Asia and Europe:
The route so far
This trip started in the US rather than Europe because he needed to get a new battery anyway. The original died after spending years in a museum, so the car was shipped to Gruber Motors, a Roadster repair shop in Arizona. Now, he’s got the upgraded 80 kWh battery, raising his range from the original ~240 miles to ~350.
To get the car to America, de Mestre accomplished what seems to be another zero-emission first – possibly the first car transported across the Atlantic with zero emissions (he couldn’t find any record of another vehicle doing the same, only transfers along the same coast).
For this feat, the car ended up in the cargo hull of the Avontuur, a cargo sailing ship. de Mestre said he was looking for a zero-emission shipping solution, but when he called the Avontuur, they told him they didn’t have enough space for a car. He pointed out that this wasn’t just any car; it was a tiny Tesla Roadster – and after checking the dimensions, they realized the car could just barely fit.
Unfortunately, there doesn’t seem to be an option for zero-emission transportation across the Pacific – yet. So Seattle to Hong Kong will have to involve fossil fuels for now.
The trip across America has thus far consisted of meeting with various Tesla clubs and longtime electric vehicle advocates and testing the legs on his new battery (he was able to get nearly 400 miles on a single charge once). And while most of the country is in his rear-view mirror at this point, he’s still got the west coast to conquer in the next couple of days. There are a couple of events and meetups planned. Scroll to the bottom of this page to see the most recent updates to the calendar (and expect changes – he’s going around the world in a Roadster, after all).
Looking ahead to Asia, another goal of this trip is to take a different route than before. Previous trips have included significant legs through Russia, which is an easier and more developed route to cross Asia.
But with the war in Ukraine and the stranglehold that Russia has over the European fossil energy supply, de Mestre wants to take another route. He’ll avoid Russia by taking a ferry from Kazakhstan to Azerbaijan across the Caspian Sea and entering Europe through Turkey. This will demonstrate how Russia could be cut out of commerce if it’s going to continue its aggressive actions.
He would also like to see more penetration of electric cars into areas outside of Europe, the US, and China and is working to coordinate the installation of charging points along his route. These other parts of the world are “like Europe was in 2012” – there are only a few EVs around, with a small but dedicated group of advocates. (Kazakhstan’s Tesla club has about seven people in it.) If the rest of the world can follow a similar trajectory, albeit delayed a bit, we’ll be on a good path toward easing the climate crisis.
Plans for 2024 and beyond
For the 2024 rally, de Mestre hopes to get 12 teams to complete 40,000 km of electric driving in 80 days – 500 km per day, consistently, for almost three months, even in the face of sometimes-slow charging, border crossings, and reliability issues. He’s planning to certify it as an official world record so that each team involved will have bragging rights that they were involved in one.
He also dreams of eventually completing a trip that involves driving to the Bering Strait and taking an all-electric car ferry across, completing a zero-emission circumnavigation in an electric car.
This is technologically possible, as there are electric car ferries already in use that would be capable of the journey, but none of them (nor any car ferry) travel between Alaska and Russia. So the political question, here, is a greater one than the technological one.
de Mestre’s adapter kitNot a lot of luggage room in the Roadster
This brings up the point that the most frustrating moments of de Mestre’s trips have been at borders: visa troubles, fees, waiting for approvals, and so on. Between these troubles and the international nature of climate change, de Mestre has largely decided that borders are a roadblock to solving many of the world’s problems. When two countries are polluting across borders, rather than working together to solve the problem, what will often happen is that each one blames the other and does nothing to improve the situation – all the while, the global problem continues.
But these dreams are further in the future or perhaps can’t be solved by a single around-the-world trip. In the meantime, he’s focused on planning for next year’s trip, which starts in May. Find out more at 80edays.com, and follow the current trip on Instagram at @80edays_official or on X at @chargelocator.
Electrek’s Take
Some may ask what the purpose of a stunt like this is, thinking that it’s just a waste of time, money, energy, and so on. But this can be asked of many human pursuits, including many that are more useless than this.
There always needs to be someone who’s first to do something, who pushes the boundaries and shows people that something is possible.
And in this case, I am just one person who heard about the first trip way back in 2012 and yet have used it as an example countless times to show people that electric cars are more capable than they might have thought.
Maybe you live in Fresno and think there aren’t enough chargers near you because you aren’t in a huge city like LA… but if a car that can’t supercharge and uses a plug that no modern car does can make it through the Gobi desert, well, maybe Fresno isn’t so difficult after all.
A stunt like this provides an object lesson: if an IT consultant can pick up with little notice and drive an electric car around the world, with as little public charging support (and no supercharging) as there was in 2012, and then 10 more teams can do it again in 2016, and hopefully more teams again in 2024… then why are your circumstances so much more impossible? Maybe it’s not that hard after all.
FTC: We use income earning auto affiliate links.More.
Turning cheap daytime solar into electricity you can actually use at night just got a lot cheaper. A new analysis from energy think tank Ember shows that utility-scale battery storage costs have fallen to $65 per megawatt-hour (MWh) as of October 2025 in markets outside China and the US. At that level, pairing solar with batteries to deliver power when it’s needed is now economically viable.
Battery storage costs have fallen dramatically over the past two years, and the decline continues. Following a steep decline in 2024, Ember’s analysis indicates that prices continued to fall sharply again in 2025.
The findings are based on real-world data from recent battery and solar-plus-storage auctions in Italy, Saudi Arabia, and India, as well as interviews with active developers across global markets.
According to Ember, the cost of a whole, grid-connected utility-scale battery storage system for long-duration projects (four hours or more) is now about $125 per kilowatt-hour (kWh) as of October 2025. That figure applies to projects outside China and the US. Core battery equipment delivered from China costs around $75/kWh, while installation and grid connection typically add another $50/kWh.
Advertisement – scroll for more content
Those lower upfront costs have pushed down the levelized cost of storage (LCOS) to just $65/MWh. Ember’s calculation reflects real-world assumptions around financing costs, system lifetime, efficiency, and battery degradation.
Cheaper hardware isn’t the only reason storage costs are falling. Longer battery lifetimes, higher efficiencies, and lower financing costs, helped by clearer revenue models such as auctions, have all contributed to the sharp drop in LCOS. Ember has published a live calculator alongside the report, allowing users to estimate LCOS using their own assumptions.
Why this matters comes down to how solar is actually used. Most solar power is generated during the day, so only a portion needs to be stored to make it dispatchable. Ember estimates that if half of daytime solar generation is shifted to nighttime, the $65/MWh storage cost adds about $33/MWh to the cost of solar electricity.
With the global average price of solar at $43/MWh in 2024, adding storage would bring the total cost to about $76/MWh, delivering power in a way that better matches real demand.
As Ember global electricity analyst Kostantsa Rangelova put it, after a 40% drop in battery equipment costs in 2024, the industry is now on track for another major fall in 2025. The economics of battery storage, she said, are “unrecognizable,” and the industry is still adjusting to this new reality.
“Solar is no longer just cheap daytime electricity; now it’s anytime dispatchable electricity. This is a game-changer for countries with fast-growing demand and strong solar resources,” Rangelova added.
Together, solar and battery storage are increasingly emerging as a scalable, secure, and affordable foundation for future power systems.
If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!
Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad
FTC: We use income earning auto affiliate links.More.
In the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss a very telling Tesla Optimus fail, Rivian’s AI/Autonomy day, Mercedes GLB EV, and more.
As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.
After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:
Advertisement – scroll for more content
We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.
Here are a few of the articles that we will discuss during the podcast:
Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET:
FTC: We use income earning auto affiliate links.More.
Nissan is reviving the Xterra, the rugged SUV that once attracted a cult-like following, but this time it will be “electrified.”
The Nissan Xterra will be electrified, but by how much?
Earlier this year, Nissan offered a sneak peek of its upcoming lineup in a shadowy image previewing several new vehicles.
Alongside the new 2026 LEAF, a plug-in hybrid Rogue, updated Pathfinder, and Sentra, Nissan teased a new electric “adventure-focused SUV,” which we later learned will be badged the Xterra.
The rugged electric SUV appeared to have a more upright, boxy stance than the original model. The previous Xterra attracted a cult-like following as a cheaper off-road alternative to the Toyota 4Runner, Ford Bronco, and Jeep Wrangler.
Advertisement – scroll for more content
However, Nissan discontinued it after the 2015 model year as buyers opted for more efficient options like the Honda CR-V and Toyota RAV4.
The new Xterra, but this time “it will have to have electrification,” according to Nissan Americas chief planning officer, Ponz Pandikuthira.
Nissan teases a new “Adventure Focused” SUV for the US (Source: Nissan)
Pandikuthira told MotorTrend that the next-gen Xterra “cannot be ICE only,” but just how electrified it will be remains up in the air. “Is that an EREV? Is that a parallel hybrid system? Is that a plug-in system? That’s not defined yet. That’s all being actively studied right now,” he explained.
Nissan plans to launch a series of new extended-range hybrid (EREV) vehicles based on its e-Power system. The e-Power system uses a gas-powered engine connected to a generator.
Nissan e-Power system compared to 100% EV and traditional hybrid setups (Source: Nissan)
The generator feeds energy to the inverter, which charges the battery and electric motor. Since the ICE only charges the battery and does not drive the wheels, it benefits from the instant torque and smooth drive of an EV.
However, it’s still powered by a gas engine at the end of the day. The 2027 Nissan Rogue will be the first e-Power vehicle in the US.
The 2026 Nissan Rogue PHEV (Source: Nissan)
The Xterra could also arrive as a plug-in hybrid (PHEV) similar to the 2026 Nissan Rogue. The 2026 Rogue will be Nissan’s first PHEV for the US and is expected to be a key part of its comeback plans.
It will go on sale in early 2026 with an EPA-estimated 36 miles of electric driving range. Combined with the gas engine, the hybrid powertrain provides up to 420 miles of EPA-estimated driving range.
The electrified Xterra will share a body-on-frame platform with the Pathfinder and Frontier, with a V-6 engine, all-wheel drive (AWD), and space for bigger batteries.
2014 Nissan Xterra (Source: Nissan)
According to Pandikuthira, the V-6 will give it an edge over the competition, while the hybrid powertrain will improve efficiency.
The “electrified” Xterra will be built at Nissan’s Canton, Mississippi, plant, starting in 2028. The following year, a luxury Infiniti electric SUV, based on the Vision QXe concept, will join it.
Electrek’s Take
While Nissan is launching new PHEVs, hybrids, and EREVs, it has already pulled one electric SUV, the Ariya, from its US lineup.
For now, the only fully electric vehicle Nissan offers in the US is the 2026 LEAF. Although it was once viewed as a leader in the shift to EVs with the initial LEAF launching in 2010, Nissan has quickly fallen behind and is now scrambling to catch up.
Nissan hopes to plug the gap with a series of gas-power hybrids over the next few years until new all-electric vehicles begin rolling out in 2028.
Even with less efficient hybrid tech, Nissan is still late to the game and will need to keep pace with Toyota, Honda, Ford, Stellantis, and others betting on hybrids in the US.
FTC: We use income earning auto affiliate links.More.