Connect with us

Published

on

AirPods — Apple’s truly wireless stereo (TWS) earphones — could double as a health monitoring tool in the future, according to a patent application recently published by the US Patent Office (USPTO). The Cupertino company appears to have invented an AirPods sensor mechanism that would allow the earphones to monitor electrical impulses from the wearer’s brain. The patent describes a system that can monitor brain activity that is typically monitored with the use of electrodes on a patient’s head but the use of AirPods could provide a more discreet way to monitor brain activity.

A patent recently published on the USPTO website describes a wearable electronic device like Apple’s AirPods that is equipped with electrodes, similar to traditional devices used to monitor biosignals such as brain activity, including electroencephalography, electrooculography, galvanic skin response, blood volume pulse, and electromyography. This could allow an AirPods wearer to monitor their brain activity even when they are travelling, without the need for a machine.

Unlike the traditional EEG monitors that are attached to a user’s scalp, the AirPods are likely to move once they are inserted in a user’s ear. In order to account for the fact that ear shape and size can vary, the patent describes a system that integrates active and reference electrodes on the external body of the AirPods’ body, along with several additional electrodes located at different positions on the eartip.

Apple’s patent abstract states the “wearable electronic device includes a sensor circuit and a switching circuit. The switching circuit is operable to electrically connect a number of different subsets of one or more electrodes in the set of electrodes to the sensor circuit.” While the description might sound a little convoluted, the company has included a diagram (figure 2) of the purported device that shows the position of the electrodes on the wireless earphones.

airpods biosensors patent uspto screenshot airpods biosensors

Diagrams from Apple’s patent application show how the technology would work
Photo Credit: Apple (via USPTO)

These AirPods’ eartips will be replaceable, according to Apple’s patent application, which also described a mechanism (figure 5) that allows a user to tap a section of the earphone’s body to start measurement of biosignals.

Meanwhile, another diagram (figure 10) shows the location of both the electrodes on the eartip and the touch sensitive area from a different angle, while suggesting that the functionality could also be supported on wired earphones such as EarPods or a pair of glasses — the reference and active electrodes would be placed on the first and second stem of the glasses, according to the document. 

It is currently unclear whether Apple plans to bring the ability to measure biosignals to its popular AirPods and other wearable devices, while a recent report suggests that the company is exploring ways to add new health features such as temperature monitoring to its earphones. Apple is also working on ways to enhance its existing health monitoring products and is reportedly working on adding non-invasive blood sugar monitoring to the Apple Watch, which is expected to make its way to a future version of the wearable device.


Samsung launched the Galaxy Z Fold 5 and Galaxy Z Flip 5 alongside the Galaxy Tab S9 series and Galaxy Watch 6 series at its first Galaxy Unpacked event in South Korea. We discuss the company’s new devices and more on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Neuralink Device Helps Monkey See Something That’s Not There

Published

on

By

Neuralink Device Helps Monkey See Something That’s Not There

Elon Musk’s Neuralink Corp. used a brain implant to enable a monkey to see something that wasn’t physically there, according to an engineer, as it moves toward its goal of helping blind people see.

The device, called Blindsight, stimulated areas of a monkey’s brain associated with vision, Neuralink engineer Joseph O’Doherty said Friday at a conference. At least two-thirds of the time, the monkey moved its eyes toward something researchers were trying to trick the brain into visualizing.

The results were the first Neuralink has publicized about tests of Blindsight, a brain chip that mimics the function of an eye. This is a closely watched frontier for brain device development, a scientific field that’s testing the boundaries of how technology can be used to potentially treat intractable conditions.

As with all animal studies, it’s an open question how the results would apply to humans. The device isn’t approved for human use in the US.

The short-term goal of Blindsight is to help people see, and the long-term goal is to facilitate superhuman vision — like in infrared — Musk has said. The company has been testing Blindsight in monkeys for the past few years and is hoping to test it in a human this year, the billionaire said in March.

On the sidelines of the conference, O’Doherty declined to comment further about Neuralink’s work.

Neuralink is also implanting devices in people who are paralyzed that allow them to communicate directly with computers, one of several companies in the growing technological field.

Five people have received Neuralink implants so far, Musk has said. Three were implanted in 2024 and two in 2025, according to O’Doherty’s presentation at the Neural Interfaces conference. In some cases, patients are using their Neuralink device for about 60 hours a week.

In the future, brain devices using similar technology could allow paralyzed people to move or walk, Musk has said. O’Doherty co-authored a poster with academic researchers, which was presented at the conference, describing an experiment that used the Neuralink implant to stimulate the spinal cord of a monkey, causing its muscles to move. Other researchers have been working on spinal cord stimulation to restore muscle movement for several years.

Musk’s medical aspirations are a stepping stone toward the goal of increasing the speed of human communication for everyone, allowing people to “mitigate the risk of digital super-intelligence,” Musk said in 2024. He’s also building artificial intelligence through his company xAI Corp.

Eventually, the company wants the Blindsight system to include a pair of glasses to help make the chip work, O’Doherty said in his talk.

Testing in monkeys has advantages. The visual cortex in a monkey is closer to the surface of the brain than in a human, making it easier to access, O’Doherty said in the presentation. Neuralink could use its surgical robot to insert its implant into the deeper regions in a person’s brain, he added.

© 2025 Bloomberg L.P.

Continue Reading

Science

SpaceX Launches 26 New Starlink Satellites, Expands Global Internet Network

Published

on

By

SpaceX Launches 26 New Starlink Satellites, Expands Global Internet Network

SpaceX just aced another launch of its Starlink internet satellites. On Thursday night (June 12), the company launched 26 new Starlink spacecraft to join its ever-growing internet megaconstellation in orbit. Flying from Launch Complex 4 East (SLC-4E) at California’s Vandenberg Space Force Base, the launch occurred at 9:54 p.m. EDT (6:54 p.m. PDT or 0154 GMT) on June 13. The satellites are planned to be deployed into orbit from the second stage about one hour and one minute after liftoff. This accomplishment brings to more than 7,600 the number of active satellites for SpaceX’s Starlink.

As per SpaceX’s official update for its 15-6 mission, the rocket’s first-stage booster, known as B1081, flew for the 15th time after 14 prior flights. It successfully touched down on the droneship Of Course I Still Love You in the Pacific Ocean, off the coast of southern California, yet again. The company’s current record for reflight of Falcon 9 boosters is 28 flights, proving itself at the same time to be the best at orbital launch efficiency.

Thursday’s mission marks the 72nd Falcon 9 launch, with 53 of those dedicated to the Starlink network. The system aims to provide high-speed internet access around the world, and an increasing number of satellites provide direct-to-cell services for texting and a limited data connection on certain kinds of smartphones and through certain carriers.

Elon Musk’s SpaceX continues to add satellites to the Starlink constellation to increase redundancy and coverage, particularly in remote areas. The current constellation has wide coverage of the Earth, allowing small satellite dishes and mobile phones to connect to the internet in real time in dozens of countries.

SpaceX is simultaneously expanding the reach of Starlink and laying the groundwork for next-generation applications like in-flight connectivity and emergency response communications. With more than 7,600 satellites now orbiting Earth and as many as dozens of additional launches on the docket, Starlink is rapidly redefining how global internet coverage can work in the modern era.

Continue Reading

Science

Aurora Alert! Northern Lights May Be Visible as Far South as New York on June 14

Published

on

By

Aurora Alert! Northern Lights May Be Visible as Far South as New York on June 14

A rare display in the night sky could be visible to skywatchers in the U.S., as the National Oceanic and Atmospheric Administration (NOAA) has issued a geomagnetic storm watch for the night of June 14. The moderate G2-level event, fuelled by disturbances in solar wind, might produce auroras visible as far south as New York and Idaho, providing a spectacular light show far beyond the usual polar zones. While it’s welcome news for aurora enthusiasts, experts caution that extended daylight hours due to the approaching summer solstice could limit ideal viewing windows.

Coronal Hole Sparks Geomagnetic Storm; Auroras May Glow as Far South as New York June 14

As per the statement from NOAA’s Space Weather Prediction Centre (SWPC), this increase in geomagnetic activity is associated to a greater degree with a co-rotating interaction region (CIR), a turbulent region where high-speed streams of solar wind collide with slower-moving wind. While these CIRs may not be as dramatic as CMEs, they can still lead to shock waves that rattle the Earth’s magnetic field. The latest CIR was formed around a large coronal hole – a particularly dark region in the Sun’s outermost atmosphere – that is currently facing Earth and spewing high-speed solar wind directly into space.

Coronal holes are allowed to expand and develop into space weather due to reduced density and lower temperature solar wind pressing outward. Forecasts suggest a Kp index of 5.67 on 14 June, so there is another chance for auroras at lower latitudes.

To catch the northern lights, search for dark, clear skies in the hours before dawn, and check in with NOAA’s 3-day space weather forecast, as well as real-time resources like the “My Aurora Forecast & Alerts” app.

The aurora is weather and atmospheric conditions permitting, and should be visible for those based outside of the Arctic Circle viewing it during an approaching storm.

Continue Reading

Trending