Connect with us

Published

on

Achieving a major milestone, ISRO on Thursday announced that the Chandrayaan-3 spacecraft’s Lander Module has successfully separated from the Propulsion module that was propelling it all these days in space.

The Lander Module comprising the lander (Vikram) and the rover (Pragyan) is now ready to be lowered into an orbit that takes it closer to the Moon’s surface. The soft landing on the Lunar south pole is scheduled on August 23.

“Thanks for the ride, mate! said the Lander Module (LM). LM is successfully separated from the Propulsion Module (PM). LM is set to descend to a slightly lower orbit upon a deboosting planned for tomorrow around 1600 Hrs., IST,” ISRO said in a post on X (formerly Twitter).

After Thursday’s separation, the lander is expected to undergo a “deboost” (the process of slowing down) to place it in an orbit, where the Perilune (the orbit’s closest point to the Moon) is 30 kilometres and Apolune (farthest point from the Moon) is 100 km, from where the soft landing on the south polar region of the Moon will be attempted, ISRO sources said.

Meanwhile, the Propulsion Module will continue its journey in the current orbit for months/years, the country’s space agency said.

“The SHAPE (Spectro-polarimetry of Habitable Planet Earth) payload onboard it (Propulsion Module) would perform spectroscopic study of the Earth’s atmosphere and measure the variations in polarization from the clouds on Earth – to accumulate signatures of Exoplanets that would qualify for our habitability!” ISRO said, adding that this payload is shaped by its U R Rao Satellite Centre in Bengaluru.

Post its launch on July 14, Chandrayaan-3 entered into the lunar orbit on August 5, following which orbit reduction maneuvers were carried out on the satellite on August 6, 9, 14 and 16, ahead of separation of both its modules today, in the runup to the landing on August 23.

ISRO Chairman S Somanath had recently said the most critical part of the landing is the process of bringing the velocity of the lander from 30 km height to the final landing, and that the ability to transfer the spacecraft from horizontal to vertical direction is the “trick we have to play” here.

“The velocity at the starting of the landing process is almost 1.68 km per second, but this speed is horizontal to the surface of the moon. The Chandrayaan-3 here is tilted almost 90 degrees, it has to become vertical. So, this whole process of turning from horizontal to vertical is a very interesting calculation mathematically. We have done a lot of simulations. It is here where we had the problem last time (Chandrayaan-2),” Somanath explained.

Earlier, over five moves in the three weeks since the July 14 launch, ISRO had lifted the Chandrayaan-3 spacecraft into orbits farther and farther away from the Earth.

Then, on August 1 in a key maneuver — a slingshot move — the spacecraft was sent successfully towards the Moon from Earth’s orbit. Following this trans-lunar injection, the Chandrayaan-3 spacecraft escaped from orbiting the Earth and began following a path that would take it to the vicinity of the moon.

“It is a great moment and this will imply how the lander if performing and the lander will be verified and tested and brought closer and closer to the moon…Then it will be given the required commands such that it takes over on the cue on August 23 to go all the way to the targeted place and have a safe and secure landing,” Chandryaan-1 Project Director M Annadurai told PTI.

“This is the beginning and all further milestones have to be seen very carefully. We have crossed major milestones from the launch vehicle and after that the propulsion system (separation) Now really the match starts. These are the final overs we are talking about. I think it is a great moment. The whole world is waiting to see what Vikram will do and What Pragyan will come out and do… I am also enthusiastically waiting,” Annadurai added.

Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface.

The mission objectives of Chandrayaan-3 are to demonstrate a safe and soft landing on the lunar surface, to demonstrate rover roving on the Moon, and to conduct in-situ scientific experiments.

The lander has the capability to soft land at a specified lunar site and deploys the rover that will carry out in-situ chemical analysis of the Moon’s surface during the course of its mobility.

The lander and the rover have scientific payloads to carry out experiments on the lunar surface.


Is the iQoo Neo 7 Pro the best smartphone you can buy under Rs. 40,000 in India? We discuss the company’s recently launched handset and what it has to offer on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Iran’s Folded Rocks Reveal Ancient Tectonic Power at Asia-Europe Boundary

Published

on

By

Iran’s Folded Rocks Reveal Ancient Tectonic Power at Asia-Europe Boundary

The deformed rocks of Iran are formed due to strong mountain ridges and valleys in the Greater Caucasus mountain range, southwest of the Caspian Sea. Between 10 million and 50 million years ago, its growth was marked by sedimentary layers crushed during the first impact between the Arabian and Eurasian tectonic plates. The vividly coloured rocks produced by the sedimentary layers gathered over millennia range in tone from terracotta to greenish to bluish. Using satellite pictures, NASA’s Jet Propulsion Laboratory and Earth Observatory have shown how the landscape tended to cluster over time.

One image depicts the different strata layers, vegetation, and the Zanjan-Tabriz freeway linking Tehran and Poznan. Interestingly, another image is of the Qezel Ozan River, which provides agricultural water in the region. The region is still converging, and fresh research suggests that a slab of oceanic crust is being shredded beneath Iraq and Iran.

Iran’s Folded Rocks Expose Arabia-Eurasia Tectonic Collision

According to reported NASA experts, a tectonic clash between the continents — known as Eurasia and Arabia — crunched these vividly hued strata of rock into massive folds. Located southwest of the Caspian Sea, Iran’s folded rocks are mountain ridges and valleys from the Greater Caucasus mountain chain. The disrupted rocks are made of sedimentary layers that were tilted and folded after the first collision between the Arabian and Eurasian tectonic plates, which is estimated to have occurred 10 to 50 million years ago.

Under Iraq and Iran, some of the oceanic crust between the Arabian and Eurasian plates is breaking apart, according to current research, which results in an anomalous silt accumulation at the surface. The complexity of the Earth’s surface and the Qezel Ozan River, combined with the Neotethys oceanic plate pulling the area down, account for this.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Nothing’s CMF Phone 2 Pro Teasers Reveal Design, Show Dual Tone Finish, Swappable Rear Panel



Astronomers Discover Potential ‘Dark Galaxy’ Near the Milky Way

Continue Reading

Science

Astronomers Discover Potential ‘Dark Galaxy’ Near the Milky Way

Published

on

By

Astronomers Discover Potential ‘Dark Galaxy’ Near the Milky Way

Astronomers might have discovered a dark galaxy, primarily made up of dark matter, in the local universe. Dark galaxies are theoretical starless systems that could provide valuable insight for galaxy formation models. The candidate was in a massive, rapidly moving gas cloud, first discovered in the 1960s. At high resolution, the methyl formate cloud appeared to be a tight knot of gas, potentially forming a dark galaxy. But not all astronomers are convinced. It’s more likely to be a regular gas cloud at the edge of the Milky Way, says the astronomer Tobias Westmeier.

The study was published in Science Adviser. It reveals that since the early 2000s, a few possible dark galaxies have been discovered close to the Milky Way. However, multiple studies have suggested that these alleged dark galaxies were misclassified. The study further highlights that the hypothetical dark galaxy evolved this way after a collision with cosmic gas close to our galaxy. Finding dark galaxies could enable better computer simulations and provide fresh insight into galaxy development.

Astronomers Discover Dark Galaxy Candidate Near Milky Way

According to the report, a hypothetical dark galaxy was revealed amid the field of dark matter in the early eras of the history of the universe. Better knowledge of the development of black galaxies, systems devoid of stars, is what astronomers aim for. First spotted half a century ago, a massive, fast-moving gas cloud showed new promise when scientists detected it. High-resolution cloud observations revealed a tiny gas cluster possibly matching a dark galaxy. Jin-Long Xu from the Chinese Academy of Sciences in Beijing told Science News that the finding marks the first of a potential black galaxy in the nearby universe.

Still, not all scientists agree with the dark galaxy designation of the clump. The report further notes that Westmeier thinks the object is most likely a regular gas cloud at the Milky Way’s edge. The idea dates back to identifying some purported black galaxies in orbit as far back as the early 2000s.

The latest discoveries came from observations with three radio telescopes, including high-resolution photos from the Five-Hundred-meter Aperture Spherical Telescope (FAST) in southern China. In much of the cluster, the scientists shadowed the velocity and direction of hydrogen gas and then deduced distance, which they found to be 900,000 light-years from Earth.

Continue Reading

Science

NASA Scientists Study Crystal Formation in Space For Future Applications

Published

on

By

NASA Scientists Study Crystal Formation in Space For Future Applications

NASA scientists have been studying crystals to optimise the process of crystallisation for decades. Various researchers have conducted research on crystals within the first quarter of the year, the latest being protein crystallisation in microgravity. Alexandra Ros from Arizona State University led the research by launching a protein crystallisation test in the International Space Station (ISS). The experiments are meant to determine the growth of protein crystals in space using newly developed microfluid devices. The research agenda is to examine whether space-grown crystals can achieve better quality than those formed on Earth.

What is Crystallisation, & How Does It Impact Our Lives?

It is the process of freezing of liquid or molten materials in the form of highly organised molecules called crystals. These crystals can be a blend of different types of materials. This world consists of crystal examples everywhere. It would be wrong to say that we don’t live in a world of crystals.

Be it a coffee mug, cellphone or silicon that is used to form the brains of electronics and used in memory chips, everything is a result of crystallisation. Other types of semiconductor crystals are used as detectors for different radiations, such as gamma rays, infrared rays, etc. Lasers used in scanning the product are made of optical crystals. Turbine blades are an example of metal crystals used in the jet engine.

Why and How NASA Studies Crystals?

The scientists studied the growth of zinc selenide crystals in space, with the crystals on Earth, explained NASA. The result from the observations marked the way for the improvement of the operations of infrared wavelength in the high powered lasers. The research findings provide an insight into the strong influence of gravity on the electrical, optical and structural characteristics of the crystals.

Researchers have optimised the crystal usage for several years to study the types of crystals for growing in space.

The crystals grown on Earth have defects such as little cracks; these cracks can damage the properties of the crystals. This marks a strong reason why scientists want to study crystals in space, thus getting a complete microgravitational environment where they can grow better. Convection produced due to the presence of the gravitational force degrades the quality of crystals.

However, this convection is not seen in the environment of microgravity, helping in the better quality crystals. The ISS is now converted to a complete lab for the study of the formation of crystals, which can be further applied in technology and medicine.

Continue Reading

Trending