Connect with us

Published

on

Achieving a major milestone, ISRO on Thursday announced that the Chandrayaan-3 spacecraft’s Lander Module has successfully separated from the Propulsion module that was propelling it all these days in space.

The Lander Module comprising the lander (Vikram) and the rover (Pragyan) is now ready to be lowered into an orbit that takes it closer to the Moon’s surface. The soft landing on the Lunar south pole is scheduled on August 23.

“Thanks for the ride, mate! said the Lander Module (LM). LM is successfully separated from the Propulsion Module (PM). LM is set to descend to a slightly lower orbit upon a deboosting planned for tomorrow around 1600 Hrs., IST,” ISRO said in a post on X (formerly Twitter).

After Thursday’s separation, the lander is expected to undergo a “deboost” (the process of slowing down) to place it in an orbit, where the Perilune (the orbit’s closest point to the Moon) is 30 kilometres and Apolune (farthest point from the Moon) is 100 km, from where the soft landing on the south polar region of the Moon will be attempted, ISRO sources said.

Meanwhile, the Propulsion Module will continue its journey in the current orbit for months/years, the country’s space agency said.

“The SHAPE (Spectro-polarimetry of Habitable Planet Earth) payload onboard it (Propulsion Module) would perform spectroscopic study of the Earth’s atmosphere and measure the variations in polarization from the clouds on Earth – to accumulate signatures of Exoplanets that would qualify for our habitability!” ISRO said, adding that this payload is shaped by its U R Rao Satellite Centre in Bengaluru.

Post its launch on July 14, Chandrayaan-3 entered into the lunar orbit on August 5, following which orbit reduction maneuvers were carried out on the satellite on August 6, 9, 14 and 16, ahead of separation of both its modules today, in the runup to the landing on August 23.

ISRO Chairman S Somanath had recently said the most critical part of the landing is the process of bringing the velocity of the lander from 30 km height to the final landing, and that the ability to transfer the spacecraft from horizontal to vertical direction is the “trick we have to play” here.

“The velocity at the starting of the landing process is almost 1.68 km per second, but this speed is horizontal to the surface of the moon. The Chandrayaan-3 here is tilted almost 90 degrees, it has to become vertical. So, this whole process of turning from horizontal to vertical is a very interesting calculation mathematically. We have done a lot of simulations. It is here where we had the problem last time (Chandrayaan-2),” Somanath explained.

Earlier, over five moves in the three weeks since the July 14 launch, ISRO had lifted the Chandrayaan-3 spacecraft into orbits farther and farther away from the Earth.

Then, on August 1 in a key maneuver — a slingshot move — the spacecraft was sent successfully towards the Moon from Earth’s orbit. Following this trans-lunar injection, the Chandrayaan-3 spacecraft escaped from orbiting the Earth and began following a path that would take it to the vicinity of the moon.

“It is a great moment and this will imply how the lander if performing and the lander will be verified and tested and brought closer and closer to the moon…Then it will be given the required commands such that it takes over on the cue on August 23 to go all the way to the targeted place and have a safe and secure landing,” Chandryaan-1 Project Director M Annadurai told PTI.

“This is the beginning and all further milestones have to be seen very carefully. We have crossed major milestones from the launch vehicle and after that the propulsion system (separation) Now really the match starts. These are the final overs we are talking about. I think it is a great moment. The whole world is waiting to see what Vikram will do and What Pragyan will come out and do… I am also enthusiastically waiting,” Annadurai added.

Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface.

The mission objectives of Chandrayaan-3 are to demonstrate a safe and soft landing on the lunar surface, to demonstrate rover roving on the Moon, and to conduct in-situ scientific experiments.

The lander has the capability to soft land at a specified lunar site and deploys the rover that will carry out in-situ chemical analysis of the Moon’s surface during the course of its mobility.

The lander and the rover have scientific payloads to carry out experiments on the lunar surface.


Is the iQoo Neo 7 Pro the best smartphone you can buy under Rs. 40,000 in India? We discuss the company’s recently launched handset and what it has to offer on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

Published

on

By

Blue Origin New Glenn Set for Launch on January 10 from Cape Canaveral

The highly anticipated debut launch of Blue Origin’s New Glenn rocket has been scheduled for January 10, 2025. The heavy-lift rocket, designed for both commercial and government missions, will take off from Florida’s Cape Canaveral Space Force Station. A launch window of three hours, beginning at 1 a.m. EST, has been announced. The rocket’s inaugural flight marks a significant milestone for Blue Origin as the company aims to validate its capabilities and establish itself as a major player in the space industry.

New Glenn’s Mission and Capabilities

According to Blue Origin, as reported by space.com, the New Glenn rocket is a reusable, 320-foot-tall launch vehicle capable of carrying 50 tons (45 metric tons) to low Earth orbit (LEO). The NG-1 mission will test the company’s Blue Ring spacecraft platform, which is designed to support a variety of orbital payloads. This demonstration will include assessments of communication systems, in-space telemetry, and ground-based tracking capabilities. The payload will remain aboard the rocket’s second stage for a six-hour mission, as stated by Blue Origin.

Booster Recovery and Future Goals

The mission will also attempt a recovery of the rocket’s first stage booster, which will land on a ship stationed in the Atlantic Ocean, as per reports from space.com. The company’s senior vice president, Jarrett Jones, emphasised the importance of the flight, stating that rigorous preparations had been undertaken but that true insights could only be gained through actual launch experiences.

NG-1 is a critical step toward securing certification for U.S. national security missions. A successful outcome would bring Blue Origin closer to fulfilling these high-stakes contracts, further solidifying its position in the competitive aerospace sector.

This launch will serve as a proving ground for the New Glenn system, with valuable data expected to inform future missions and technology advancements.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Spiders Detect Smells Through Leg Hairs, Claims New Study

Published

on

By

Spiders Detect Smells Through Leg Hairs, Claims New Study

New research has revealed that spiders use specialised hairs on their legs to detect airborne scents, offering fresh insights into the sensory abilities of these arachnids. This discovery has resolved a long-standing question about how spiders, which lack antennae like insects, can identify odours such as pheromones. Male spiders were observed using olfactory hairs, known as wall-pore sensilla, to sense sex pheromones emitted by females. This mechanism underscores their ability to locate potential mates through chemical signals.

Olfactory Sensilla Identified

According to a study, published in the Proceedings of the National Academy of Sciences, the wall-pore sensilla were found on the upper legs of adult male wasp spiders (Argiope bruennichi). These microscopic structures are believed to be critical for detecting pheromones. High-resolution scanning electron microscopy revealed thousands of these sensilla, which were absent in females and juvenile males. This specific distribution supports their role in mate detection. Researchers emphasised to phys.org that these findings have mapped and identified the elusive sensilla, previously thought to be absent in spiders.

Response to Pheromones

Experiments demonstrated the sensitivity of these sensilla to pheromone compounds. Tiny amounts of the substance, such as 20 nanograms, elicited significant neuronal responses. The experiments involved exposing the sensilla to pheromone puffs, and responses were observed consistently across various leg pairs. The researchers concluded that spiders’ olfactory systems rival the sensitivity seen in insects, highlighting their advanced chemical detection capabilities.

Broader Implications

The study explored 19 other spider species and confirmed the presence of wall-pore sensilla in most male spiders, suggesting that this trait evolved multiple times. However, it was noted that some primitive species lack these structures. Future research is expected to investigate how female spiders detect smells, the types of chemicals relevant to their behaviours, and the evolutionary aspects of olfaction in spiders.

This breakthrough provides a foundation for understanding the sophisticated sensory mechanisms that govern spider behaviour.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

PFAS Chemicals Harm Freshwater Turtles in Australia, New Research Finds

Published

on

By

PFAS Chemicals Harm Freshwater Turtles in Australia, New Research Finds

Exposure to per- and polyfluoroalkyl substances (PFAS), often termed “forever chemicals,” is raising concerns over its impact on wildlife health. Recent research has uncovered significant health problems in freshwater turtles in Australia exposed to PFAS. These issues are not limited to adult turtles but extend to their hatchlings. PFAS, widely known for their persistence in the environment, have been found accumulating in the organs of these reptiles, potentially impacting their long-term survival and reproduction.

Study Reveals PFAS Impacts on Australian Turtles

According to a study published in Science of the Total Environment, researchers, led by David Beale, an environmental biochemist at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), examined freshwater turtles (Emydura macquarii) from three locations in Queensland. These sites varied in PFAS contamination levels, with some showing high concentrations and others barely detectable. The study found that PFAS exposure disrupted metabolic functions in turtles and led to bioaccumulation in vital organs, including the ovaries, liver, kidneys, and heart.

In statements provided to Science News, Beale explained that hatchlings from lab-incubated eggs, derived from PFAS-exposed turtles, showed deformities such as scale abnormalities. He noted that contamination was transferred to offspring via fats and nutrients, raising alarms over generational health impacts.

Concerns Over Declining Juvenile Populations

Reports indicate that juveniles are missing in PFAS-contaminated sites. Beale suggested this could be linked to deformities making them vulnerable to predators or early mortality due to health issues. Differences in egg size and number were also observed, though direct connections to PFAS remain unconfirmed.

Experts Call for Urgent Action

Jean-Luc Cartron, a biologist at the University of New Mexico, expressed concern in his statement to Science News over these findings, emphasising the urgency to address ecological toxicity. He warned that delays in action could result in the loss of entire generations of wildlife.

The research team plans to expand studies to other species and regions, including crocodiles, frogs, and cane toads, to better understand the widespread impact of PFAS on wildlife.

https://www.gadgets360.com/science/news/nasa-delays-artemis-2-and-artemis-3-missions-to-address-key-technical-challenges-7321848

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending