Connect with us

Published

on

Reviewed by Lily Ramsey, LLM Aug 18 2023

A new study, 'Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study', published today (17 August 2023) in Nature Microbiology, proves that using DDNS to detect polio outbreaks can save public health authorities crucial time and money.

This research was jointly conducted by researchers at the Institut National de Recherche Biomédicale in Kinshasa who implemented DDNS in the Democratic Republic of the Congo (DRC) for the detection of polio outbreaks in collaboration with the MHRA, Imperial College London, the University of Edinburgh and various laboratories of the World Health Organization (WHO) Global Polio Laboratory Network (GPLN), with support from the Bill and Melinda Gates Foundation.

This is the first time that this type of scientific technique has been used to detect polio. Similar techniques have previously been used to detect COVID-19, Ebola, measles and monkeypox.

By enabling samples to be tested in the country where the outbreak originated rather than being sent to specialist laboratories abroad, the costs and delays of transport and testing can be reduced from an average of 42 days to an average of 19 days.

Currently, stool samples from countries with active polio outbreaks such as the DRC must be shipped around the world for lengthy, complex laboratory tests to confirm a polio case. Faster detection of polio in the regions where outbreaks still occur allows for a faster response by authorities through targeted, localised vaccination campaigns, minimising the opportunity for the virus to spread.

Javier Martin, Principal Scientist in Virology at the MHRA said: We are standing at a delicate and pivotal moment for the eradication of polio. While vaccination programmes have seen polio disappear in many countries, the delayed detection of outbreaks poses a major threat to those efforts.

By implementing detection methods such as DDNS, we can identify where outbreaks are and which polio strain is present much more quickly, allowing us to act at the earliest opportunity.

This is the result of years of work, collaborating with our partners. Together, we will continue to build on this research and support countries at risk of outbreaks to implement DDNS testing to help make polio a disease of the past."

This research showed that DDNS tests done locally in the DRC over a six-month period were an average of 23 days faster than the standard method, with over 99% accuracy.

Researchers also tested this technique in the UK and detected poliovirus in London in 2022, leading to the recent drive to ensure children under the age of 12 are vaccinated through the London polio catch-up campaign 2023.

Professor Placide Mbala-Kingebeni, Medical Doctor and Virologist at the Institut National de Recherche Biomédicale said: This is the perfect example of collaboration, where combining and sharing knowledge together with all our partners has supported the vital work of the INRB in the DRC where poliomyelitis remains a serious public health problem.

Collaboration and training with our partners has empowered the local team not only to master and confidently carry out this new technique but also to transfer the knowledge and skills to other African countries where poliovirus outbreaks are reported regularly.

The support and guidance of the Bill and Melinda Gates Foundation and the GPLN, who make these collaborations possible, enables the application and expansion of DDNS across Africa for the rapid detection of poliovirus and outbreak response, helping us move closer towards polio eradication."

Dr Alex Shaw, Research Fellow in the School of Public Health at Imperial College London said: This method allows the rapid confirmation of polio strains, facilitating swifter vaccine responses that can reduce the number of polio cases stemming from an outbreak. Development and validation of the method has been the result of fruitful collaboration between a consortium of many partners.

As a consortium we look forward to the training of additional national laboratories in this method, with prior trainees, including members of INRB, now taking on the role of trainers.

The sequencing technology used in this method is easily adapted for the detection and typing of other organisms. This rollout will therefore provide a foundation of skills and experience that can be redirected to the genomic surveillance of other pathogens as needed." Related StoriesCutting-edge research: machine learning identifies early predictors of type 1 diabetesBibliometric analysis reveals research trends connecting Alzheimer's disease and the gut microbiomeResearch uncovers new insights into post-COVID-19 syndrome (PCS) phenotypes and impact on quality of life

Polio is an infectious disease caused by the poliovirus, most commonly transmitted through contact with infected feces via contaminated food and water.

While many people may never show symptoms, in extreme cases, especially for babies and children under the age of five, polio can lead to permanent paralysis or death.

The WHO has identified delays in detection as one of the major challenges facing their Polio eradication strategy 2022-2026.

While faster detection methods such as DDNS cannot eradicate polio on their own, they play an essential part in managing outbreaks.

Scientists at the MHRA will continue to support the testing and validation of DDNS as a polio detection technique and training WHO laboratories around the world in how to use it. Source:

GOV.UKJournal reference:

Shaw, A. G., et al. (2023). Sensitive poliovirus detection using nested PCR and nanopore sequencing: a prospective validation study. Nature Microbiology. doi.org/10.1038/s41564-023-01453-4.

Continue Reading

Science

Climate Satellite MethaneSAT Fails After Just One Year in Orbit

Published

on

By

Climate Satellite MethaneSAT Fails After Just One Year in Orbit

One of the world’s most advanced satellites for detecting methane and other gases that contribute to the warming of the planet has gone dark and stopped communicating with ground-based controllers just over a year after being launched into orbit. Created by the nonprofit Environmental Defense Fund (EDF), the satellite — estimated to cost as much as $88 million — hitched a ride into space on a SpaceX rocket in March 2024. It was charged with monitoring methane leaks from oil and gas operations, and then making the data available to policymakers and scientists through open access. But on June 20, contact with the satellite was lost, and attempts to recover it have failed. EDF officially reported on July 1 that MethaneSAT has lost power and appears unlikely to recover.

MethaneSAT Failure Marks Setback for Climate Transparency Despite Data Gains and Global Support

As per a statement released by EDF, MethaneSAT’s failure came despite multiple recovery attempts. The satellite was constructed to lift the veil off methane’s invisible, weighty impact on global warming. It is nowhere near as common as carbon dioxide, but over a timescale of, say, a century, it is 20 to 30 times more efficient at trapping heat in the atmosphere than carbon dioxide. That makes its emissions a prime target in the effort to minimize the risks of global warming. MethaneSAT was developed to independently corroborate industrial methane reports, especially those from fossil fuel extraction. The loss of the satellite is a remarkable setback for transparency in climate science and monitoring of emissions worldwide.

Yet mission operators are hopeful that data already collected will have far-reaching effects. EDF emphasized that insights from MethaneSAT’s year in orbit will continue to be processed and made public in the coming months. The mission included backing from 10 partners such as Harvard University, the New Zealand Space Agency, BAE Systems, Google, and the Bezos Earth Fund.

Officials called MethaneSAT a bold and needed move to hold our climate accountable. Although the mission was cut short, it signaled one of the largest joint efforts between science, advocacy, and technology to battle climate change. “To succeed in meeting the climate challenge, we need bold action and fearless innovation,” EDF mentioned, describing the satellite as “at the vanguard of science.”
MethaneSAT’s brief history highlights the difficulty — and importance — of deploying space-based instruments to try and combat climate change. As other missions get ready to blaze the same trail, the data and experience this little spacecraft provided will influence the future of Earth observation.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Microsoft Says Xbox Chief Phil Spencer Not Retiring ‘Anytime Soon’ After Rumour Surfaces Amid Layoffs

Continue Reading

Science

New Interstellar Comet 3I/ATLAS Speeds Through Solar System

Published

on

By

New Interstellar Comet 3I/ATLAS Speeds Through Solar System

A newly confirmed interstellar comet is making a rare passage through our solar system — and skywatchers can catch it live online tonight. The object, now called 3I/ATLAS, is just the third interstellar visitor ever detected after the well-known ‘Oumuamua (2017) and 2I/Borisov (2019). The comet was so fresh when first detected on July 1 by the ATLAS telescope in Chile that it hadn’t even been given a name yet; the Minor Planet Center has it listed as “3I,” the “I” standing for interstellar. Tonight’s webcast will kick off at 6 p.m. EDT (2200 GMT) from the Virtual Telescope Project’s virtual observing facilities in Italy.

Interstellar Comet 3I/ATLAS Speeds Toward Sun at 68 km/s, Offers Rare Study Opportunity

As per a report by Space.com, 3I/ATLAS was detected as a faint object displaying subtle cometary features, including a marginal coma and a short tail. Currently located 4.5 astronomical units (AU) from the sun — about 670 million kilometers (416 million miles) — the comet is faint at magnitude 18.8, making it invisible to amateur telescopes. The interstellar object is traveling at an astonishing pace of 68 kilometers per second (152,000 mph) relative to the sun, but NASA officials say it poses no danger to Earth.

It was imaged by the Virtual Telescope Project on July 2, showing the comet as a point of light within the trailing background stars — a sure indication that it is indeed moving through space. 3I/ATLAS should brighten a little as it approaches the sun, particularly when it gets closest, or its perihelion, on Oct. 30, when it swings within 1.4 astronomical units of the sun or Mars’ orbit.

The close pass by this interstellar visitor is a rare chance for astronomers to study the materials and dynamics outside our solar system. 3I/ATLAS, which is racing along at a frenetic pace on an elliptical orbit, may also support research into how these objects change as they sit in different stellar environments.

After disappearing behind the sun in late fall, 3I/ATLAS is projected to return to observational reach in early December. Researchers anticipate further analysis then, expanding our understanding of these rare visitors that traverse the galaxy — and occasionally, pass through our celestial neighborhood.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


The Hunt: Rajiv Gandhi Assassination Now Available For Streaming on SonyLIV

Continue Reading

Politics

OKX CEO apologizes after ‘false positives’ lock users out of accounts

Published

on

By

OKX CEO apologizes after ‘false positives’ lock users out of accounts

OKX CEO apologizes after ‘false positives’ lock users out of accounts

The CEO of OKX says that “false positives” are among the biggest challenges the crypto exchange faces in ensuring global compliance.

Continue Reading

Trending