Connect with us

Published

on

After the successful Chandrayaan-3 mission to the Moon, ISRO on Monday announced that India’s first solar mission Aditya-L1 to study the Sun will be launched on September 2 at 11.50 am from Sriharikota spaceport. 

Aditya-L1 spacecraft is designed to provide remote observations of the solar corona and in-situ observations of the solar wind at L1 (Sun-Earth Lagrange point), which is about 1.5 million kilometres from the Earth.

Lagrange Points are positions in space where the gravitational forces of the Sun and the Earth produce enhanced regions of attraction and repulsion. These can be used by spacecraft to reduce fuel consumption needed to remain in position, according to NASA. Lagrange points are named in honor of Italian-French mathematician Josephy-Louis Lagrange.

The Bengaluru-headquartered space agency said in a social media post that the spacecraft — the first space-based Indian observatory to study the Sun — would be launched using a PSLV-C57 rocket.

The Aditya-L1 mission, aimed at studying the Sun from an orbit around the L1, would carry seven payloads to observe the photosphere, chromosphere and the corona — the outermost layers of the Sun — in different wavebands.

Aditya-L1 is a fully indigenous effort with the participation of national institutions, an ISRO official said.

The Bengaluru-based Indian Institute of Astrophysics (IIA) is the lead institute for the development of Visible Emission Line Coronagraph (VELC) payload while Inter-University Centre for Astronomy and Astrophysics, Pune, has developed the Solar Ultraviolet Imaging Telescope (SUIT) payload for the mission.

According to ISRO, VELC aims to collect the data for solving how the temperature of the corona can reach about a million degrees while the Sun’s surface itself stays just over 6000 degrees Centigrade.

Aditya-L1 can provide observations on the corona, and on the solar chromosphere using the UV payload and on the flares using the X-ray payloads. The particle detectors and the magnetometer payload can provide information on charged particles and the magnetic field reaching the halo orbit around L1.

The satellite, developed by U R Rao Satellite Centre here, arrived at ISRO’s spaceport of Sriharikota in Andhra Pradesh, earlier this month.

It is planned to be placed in a halo orbit around the L1 point of the Sun-Earth system.

A satellite placed in the halo orbit around the L1 point has the major advantage of continuously viewing the Sun without any planets obstructing the view or causing eclipses, ISRO noted. “This will provide a greater advantage of observing the solar activities and its effect on space weather in real time,” it said.

Using the special vantage point L1, four payloads would directly view the Sun and the remaining three payloads are expected to carry out in-situ studies of particles and fields at the L1 point, thus providing important scientific studies of the propagatory effect of solar dynamics in the interplanetary medium.

“The SUITs of Aditya L1 payloads are expected to provide the most crucial information to understand the problem of coronal heating, coronal mass ejection (CME), pre-flare and flare activities and their characteristics, dynamics of space weather, propagation of particle and fields etc,” ISRO said.

The major science objectives of the Aditya-L1 mission are: study of solar upper atmospheric (chromosphere and corona) dynamics; study of chromospheric and coronal heating, physics of the partially ionised plasma, initiation of the coronal mass ejections, and flares; observe the in-situ particle and plasma environment providing data for the study of particle dynamics from the Sun; and physics of solar corona and its heating mechanism.

Besides, the mission aims to study diagnostics of the coronal and coronal loops plasma: temperature, velocity and density; development, dynamics and origin of CMEs; identify the sequence of processes that occur at multiple layers (chromosphere, base and extended corona) which eventually leads to solar eruptive events; magnetic field topology and magnetic field measurements in the solar corona; and drivers for space weather (origin, composition and dynamics of solar wind).

The instruments of Aditya-L1 are tuned to observe the solar atmosphere, mainly the chromosphere and corona. In-situ instruments will observe the local environment at the L1 point. 

Continue Reading

Science

New Study Finds Hercules-Corona Borealis Great Wall Bigger and Nearer Than Thought

Published

on

By

New Study Finds Hercules-Corona Borealis Great Wall Bigger and Nearer Than Thought

Astronomers have revealed that the Hercules-Corona Borealis Great Wall, a massive network of galaxies, might be bigger than they realised. By mapping the cosmos with gamma-ray bursts (GRBs)—the brightest explosions in the universe—astronomers found that this structure is even bigger than previously estimated. Surprisingly, portions of it also lie significantly closer to Earth than previously believed, challenging fundamental assumptions about how the universe is structured and evolves.
This cosmic structure was first observed in 2014 — a dense galaxy forming a filament of a supercluster.

A new study now extends the researchers’ previous work, but with a wider GRB sample. Hakkila and Zsolt Bagoly, authors of the study, have refined the measurements. They detected a number of relatively nearby GRBs in their sample. The evidence also shows the Great Wall is larger and wider than previously predicted.

Gamma-Ray Bursts Expose Structure Too Large for Current Models

According to a Space.com report, the GRBs figure prominently in the early discovery and more recent growth of the Hercules–Corona Borealis Great Wall. These explosive outbursts — from either collapsing massive stars or colliding neutron stars — produce powerful jets that can be spotted over cosmological distances. Hakkila told the publication that GRBs act as another bright beacon for identifying galaxies, even those too faint to see directly. Because of their brightness, scientists can follow matter throughout the universe more distinctly than ever.

The Great Wall, over 10 billion light-years long, challenges the cosmological principle of uniform universe appearance. Its massive size indicates gaps in current theories and implies that the universe’s formation time was insufficient for such massive structures.

THESEUS May Reveal Full Scale of Cosmic Great Wall

NASA’s Fermi Gamma-ray Burst observations reveal 542 GRB events, but more data is needed to fully understand the Great Wall’s scope due to misidentified origins and sparse sampling. Hakkila points toward the upcoming ESA mission THESEUS — the Transient High Energy Sources and Early Universe Surveyor — as the next major leap.

The mission aims to dramatically expand the catalogue of known GRBs, particularly at extreme distances. “It could finally provide the observational leverage needed to map the Hercules–Corona Borealis Great Wall to its full extent,” Hakkila told Space.com, emphasising its role in refining our understanding of the universe’s large-scale structure.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Apple, Meta Fined as EU Presses Ahead with Tech Probes



Tesla Says India’s 100 Percent Car Tariffs Make Customers Anxious

Related Stories

Continue Reading

Science

Ancient Greenland Rocks Found in Iceland Sheds Light on Late Antique Ice Age

Published

on

By

Ancient Greenland Rocks Found in Iceland Sheds Light on Late Antique Ice Age

A study published in April 2025 provides new insight into one of the mysterious historical climate change periods known as LALIA (the Late Antique Ice Age). This period is known to last from 536 to 660 AD. The trio of scientists, namely, Christopher Spencer, Ross Mitchell and Thomas Gernon, published in a journal describing the analysis of misplaced Greenland rocks found lodged in the cliffs of Iceland, offering direct evidence of iceberg activity connected to this period of an ice age.

Discovery of the LALIA

The study was published in the journal Geology. As per Phys.org, the earlier research has depicted that the Earth’s northern hemisphere had undergone a chilly spell beginning around 540 AD because of the eruption of huge volcanoes, which led to the rise in debris in the atmosphere, leading to the darkening of the skies. A few historians speculated that the sudden cold weather led the Goths to attack the Romans in Europe, as they moved toward the south, warmer regions led to the fall of the Roman Empire.

Understanding the Misplaced Rocks

The researchers studied some cliffs on the western coast when they noticed that the rocks actually looked out of place. They collected a few rocks to study in the lab. The team crushed the rocks in the lab to study their remnants under a microscope. They pulled the zircon crystals from the centre of these rocks.

In their lab, the team crushed the rocks and looked at their remnants under a microscope, allowing them to pull out zircon crystals from their centres. These crystals can be used as a time capsule. After studying their age and composition, the scientists could trace the original place of these rocks across Greenland. This predicts that these rocks were moved by someone more than 1500 years ago.

The scientists studied the rocks’ age placed at the LALIA, depicting that the rocks were moved after breaking the ice from the large glaciers of Greenland that formed as per the colder scenarios formed during that period.

Scope of the Study

The research stands as a major step forward in understanding the Earth’s climate in the past. These rocks have given clear proof of increased glacial activity at the time of LALIA, indicating the outcomes of modern and future climatic changes.

Continue Reading

Science

SpaceX Sends Europe’s First Reentry Capsule into Orbit on Bandwagon-3 Rideshare Mission

Published

on

By

SpaceX Sends Europe’s First Reentry Capsule into Orbit on Bandwagon-3 Rideshare Mission

A Falcon 9 rocket soared into space from Cape Canaveral Space Force Station in Florida on April 21 at 8:48 p.m. EDT (0048 GMT, April 22), carrying multiple payloads on SpaceX’s latest rideshare mission, Bandwagon-3. Among the diverse cargo onboard was Phoenix 1, a European-built reentry capsule developed by the German company Atmos Space Cargo. History will be made here in European aerospace with this launch, as Phoenix 1 becomes the first capsule from Europe intending to return from space and splash down on Earth after just one orbit, barely 1,200 miles offshore of Brazil.

Phoenix 1 Debuts as Europe’s First Private Reentry Capsule on SpaceX Bandwagon-3 Flight

According to Atmos Space Cargo, this mission is the first-ever atmospheric reentry attempt of a European private entity. Phoenix 1 is meant to test out essential technologies, including the company’s inflatable heat shield needed to return high-value cargo from space safely, the company noted. “Our mission is to revolutionise space logistics by enabling groundbreaking advancements in microgravity research, in-orbit manufacturing, defence applications, and life sciences,” says the firm’s website. The successful reentry and splashdown will support future commercial applications across these sectors.

Phoenix 1 shared the ride with several other payloads, including 425Sat-3, operated by South Korea’s Agency for Defence Development, and Tomorrow-S7, a weather satellite from the meteorological technology company Tomorrow Companies Inc. These collaborative launches are part of SpaceX’s growing commitment to enabling diverse and cost-effective access to low Earth orbits via its ridesharing programs. The Bandwagon missions, which began in April 2024 and continued with a second flight in December that year, operate alongside the long-established Transporter series, which has completed 13 missions since 2021.

Phoenix 1 Marks Shift Toward Scalable Reentry Missions in European Space Logistics

While the Transporter program is known for launching a large number of satellites—including a record-breaking 143 on a single flight in January 2021—the Bandwagon series focuses on smaller, more flexible ridesharing configurations. The dispatch of Phoenix 1 on Bandwagon 3 is the latest sign of a trend toward greater mission flexibility to develop and operate bespoke space technologies in support of different kinds of space exploration and logistics, and yet another indication of commercial innovation extending the boundaries of the possible in space.

A successful test flight of Phoenix 1 would have significant ramifications for European space companies, being positioned as proof of the Phoenix program—demonstrating mission-critical capabilities regarding return flights and retrofitting, while being the seed for a scalable reaping capability for research institutions and commercial entities.

Continue Reading

Trending