Connect with us

Published

on

India’s Aditya-L1 solar mission spacecraft has commenced collecting scientific data to help scientists analyse particles surrounding Earth, ISRO said on Monday. 

The sensors on board India’s first solar observatory have begun measuring ions and electrons at distances greater than 50,000 km from Earth, ISRO announced in a post on X. 

The national space agency said that the sensors on STEPS or the Supra Thermal & Energetic Particle Spectrometer instrument began measuring supra-thermal and energetic ions and electrons at distances greater than 50,000 km from Earth. 

The instrument is a part of the Aditya Solar Wind Particle EXperiment (ASPEX) payload of Aditya L1. 

STEPS comprises six sensors, each observing in different directions and measuring supra-thermal and energetic ions ranging from 20 keV/nucleon to 5 MeV/nucleon, in addition to electrons exceeding 1 MeV. These measurements are conducted using low and high-energy particle spectrometers. 

The data collected during Earth’s orbits helps scientists to analyse the behaviour of particles surrounding the Earth, especially in the presence of its magnetic field. 

STEPS was activated on September 10 at a distance greater than 50,000 km from Earth. This distance is equivalent to more than eight times the Earth’s radius, placing it well beyond Earth’s radiation belt region. 

After completing the necessary instrument health checks, data collection continued until the spacecraft had moved farther than 50,000 km from Earth. 

These STEPS measurements will persist during the cruise phase of the Aditya-L1 mission as it progresses toward the Sun-Earth L1 point. They will continue once the spacecraft is positioned in its intended orbit. 

Data collected around L1 would provide insights into the origin, acceleration, and anisotropy of solar wind and space weather phenomena. 

STEPS was developed by the Physical Research Laboratory with support from the Space Application Centre in Ahmedabad. 

Aditya-L1 was launched by ISRO on September 2. 

The spacecraft carries seven different payloads to study the Sun, four of which will observe the light from the Sun and the remaining three will measure in situ parameters of the plasma and magnetic fields. 

Aditya-L1 will be placed in a halo orbit around the Lagrangian Point 1 (L1), which is 1.5 million km from the Earth in the direction of the Sun. It will revolve around the Sun with the same relative position and hence can see the Sun continuously. 


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

ISS Experiment Shows Moss Spores Can Survive Harsh Space Environment

Published

on

By

A hardy moss species survived 283 days on the outside of the ISS, enduring vacuum, radiation and extreme temperatures. More than 80% of its spores lived and germinated back on Earth. The findings reveal surprising resilience in early land plants and may support future Moon and Mars ecosystem designs.

Continue Reading

Science

NASA’s Perseverance Rover Finds Metal-Rich Rock on Mars: What You Need to Know

Published

on

By

NASA’s Perseverance rover has identified Phippsaksla, a sculpted, metal-rich boulder in Jezero Crater with an unusually high iron-nickel composition. The rock’s chemistry strongly suggests it is a meteorite formed elsewhere in the solar system. Its presence within impact-shaped terrain offers fresh clues about ancient asteroids and helps scientists reconstruct key…

Continue Reading

Science

Asteroid 2024 YR4: Earth Safe, but New Data Shows Small 2032 Lunar Impact Risk

Published

on

By

Asteroid 2024 YR4 has been cleared as an Earth threat, but updated observations show a small chance it could hit the Moon in 2032. Space agencies are monitoring the asteroid closely, expecting new data to narrow uncertainties and determine whether the lunar-impact probability will drop or rise.

Continue Reading

Trending