Connect with us

Published

on

NASA on Wednesday gave the public a first glimpse of what scientists found inside a sealed capsule that was returned to Earth last month carrying a carbon-rich soil sample scooped from an asteroid‘s surface, including water-bearing clay minerals.

A small quantity of the material collected by the OSIRIS-REx spacecraft three years ago from the near-Earth asteroid Bennu was unveiled in an auditorium at NASA’s Johnson Space Center in Houston, a little more than two weeks after it was parachuted into the Utah desert.

The return capsule’s landing capped a seven-year joint mission of the US space agency and the University of Arizona. It was only the third asteroid sample, and by far the biggest, returned to Earth for analysis, following two similar missions by Japan’s space agency ending in 2010 and 2020.

“It’s days like this that continue to amaze me,” NASA chief Bill Nelson said from the stage as he introduced the first picture of material retrieved from Bennu, a celestial artifact about 4.5 billions years old, on a viewing screen.

The image showed a loose cluster of small charcoal-colored rocks, pebbles and dust found to have been left in the outer portion of the sample-collection assembly when the asteroid’s soil was sucked through a filter into the spacecraft’s storage canister.

Technicians are still methodically disassembling hardware surrounding the inner science canister containing the bulk of the specimen, a process expected to take two more weeks.

But the “bonus” sample of overflow material was immediately examined with electron microscopes and X-ray instruments, said Dante Lauretta, principal mission investigator at the University of Arizona.

What they found was material high in carbon, nearly 5% by weight of an element essential to all life on Earth, as well as water molecules locked in the crystallized structure of clay fibers, Lauretta said.

Scientists also discovered iron minerals in the form of iron sulfides and iron oxides, “which themselves are indicative of formation in a water-rich environment,” Lauretta told a later news briefing.

Daniel Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center, said early analysis found the material seems to be “loaded with organics.”

The preliminary findings point to a likelihood of further discoveries that could buttress the hypothesis that early Earth was seeded with the primordial ingredients for life by celestial objects such as comets, asteroids and meteorites that bombarded the young planet.

Ancient rubble pile

Bennu, discovered in 1999, is described by scientists as a relatively loose clump of rocky material, like a rubble pile, held together by gravity. It measures about three-tenths of a mile (500 meters) across, making it slightly wider than the Empire State Building is tall but tiny compared with the Chicxulub asteroid that struck Earth some 66 million years ago, wiping out the dinosaurs.

Like other asteroids, Bennu is a relic of the early solar system. Because its present-day chemistry and mineralogy are virtually unchanged since its formation, it holds clues to the origins and development of rocky planets such as Earth, and could prove central to studies of astrobiology.

The capsule was initially inspected at the Utah Test and Training range near the landing site, then flown to Houston for closer examination in a specially built “clean room” inside a Johnson Space Center astromaterials curation facility.

In the months ahead, the overall asteroid sample is to be parceled out into smaller specimens promised to some 200 scientists in 60 laboratories around the world.

At the time it landed, the Bennu sample was estimated to weigh about 250 grams (8.8 ounces), well above the minimum amount of 60 grams (2 ounces) scientists had hoped to collect. A more precise measurement will come in a few weeks, once the canister has been fully opened and all the contents weighed.

OSIRIS-REx launched in 2016 and reached Bennu in 2018, then spent nearly two years orbiting it before venturing close enough to snatch a sample of the loose surface material with its robotic arm on October 20, 2020.

Lauretta said preliminary analysis of the first bits of the sample showed that orbital observations of the asteroid had “predicted the mineralogy very accurately.” 

NASA is due to launch a separate mission on Thursday to a more distant asteroid called Psyche, a metal-rich body believed to be the remnant core of a protoplanet and the largest known metallic object in the solar system.

© Thomson Reuters 2023


Samsung launched the Galaxy Z Fold 5 and Galaxy Z Flip 5 alongside the Galaxy Tab S9 series and Galaxy Watch 6 series at its first Galaxy Unpacked event in South Korea. We discuss the company’s new devices and more on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Catch the Beaver Moon on Nov 15, 2024 – the year’s last supermoon!

Published

on

By

Catch the Beaver Moon on Nov 15, 2024 - the year's last supermoon!

The final supermoon of 2024, known as the Beaver Moon, will make its appearance on Friday, November 15. This full moon, which will reach its peak illumination at 4:29 PM EST, is anticipated by lunar enthusiasts as it marks the last supermoon event of the year. Visible as dawn approaches in Jakarta, this celestial event follows October’s Hunter’s Moon and concludes a sequence of four consecutive supermoons observed throughout 2024, according to NASA.

What is the Beaver Moon?

November’s full moon is traditionally called the Beaver Moon, a term that originates from Native American customs and was popularised by the Maine Farmer’s Almanac. This name is linked to the seasonal timing when beavers prepare their dens for winter or were historically hunted to ensure a supply of warm furs. In various regions, November’s full moon is also known as the Frost Moon or Snow Moon, reflecting the colder weather patterns typically seen in North America during this time.

When to See the Beaver Moon

The Beaver Moon will appear full to viewers for three days, from the early hours of 14 November to just before sunrise on November 17. This gives stargazers multiple opportunities to catch a glimpse of the bright, enlarged moon, which will be slightly closer to Earth than usual, enhancing its size and brightness compared to typical full moons. This phenomenon occurs when the moon reaches its closest orbital point, known as perigee, during a full phase, resulting in what is known as a supermoon.

Other Astronomical Highlights This Month

Apart from the Beaver Moon, November brings other notable astronomical events. On 16 November, Mercury will reach its greatest eastern elongation, making it ideal for evening observation. Additionally, the Leonid meteor shower is expected to peak from November 17 to 18, providing another highlight for skywatchers. Uranus will also be visible, reaching its closest point to Earth on November 17, according to Seasky.org, giving viewers a brighter and more accessible sighting.

For those interested in astronomy, November 15 offers a special chance to observe this year’s last supermoon before the seasonal Cold Moon arrives in December.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Kanguva OTT Release Date Reportedly Revealed: Here’s Everything You Need to Know



Vivo Y300 5G India Launch Date Announced; Rear Design, Colours Revealed

Continue Reading

Science

Scientists Discover New Electric Field in Earth’s Atmosphere

Published

on

By

Scientists Discover New Electric Field in Earth’s Atmosphere

A faint electric field has been detected in Earth’s atmosphere, confirming a theory that scientists have held for decades. This ambipolar electric field, though weak at just 0.55 volts, could play a vital role in shaping Earth’s atmospheric evolution and its ability to support life, according to recent findings. Glyn Collinson, an atmospheric scientist at NASA’s Goddard Space Flight Center, led the Endurance rocket mission, which successfully measured this field in May 2022 above Svalbard, Norway. Collinson has described this field as a “planetary-energy field” that had eluded scientific measurement until now.

How the Ambipolar Field Affects Earth’s Atmosphere

The presence of this field is thought to explain a phenomenon observed decades ago—the polar wind. When sunlight strikes atoms in the upper atmosphere, it can cause negatively charged electrons to break free and drift into space, while the heavier, positively charged oxygen ions remain. To maintain an electrically neutral atmosphere, a faint electric field forms, tying these particles together and preventing electrons from escaping. This weak field has been shown to provide energy to lighter ions, such as hydrogen, enabling them to break free from Earth’s gravity and contribute to the polar wind.

This ambipolar electric field could have implications for planetary habitability. David Brain, a planetary scientist at the University of Colorado Boulder, noted that understanding how such fields vary across planets could shed light on why Earth has remained habitable compared to planets like Mars and Venus. Although both Mars and Venus have electric fields, the absence of a global magnetic field on those planets allowed more of their atmospheres to escape into space, potentially altering their climates significantly.

Further Research Planned

NASA has recently approved a follow-up mission with a rocket named Resolute, expected to launch soon. Collinson believes that continued investigation into planetary electric fields may help answer fundamental questions about why Earth supports life while other planets do not.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Dying Light 2, Like a Dragon: Ishin!, GTA 5 and More Join PS Plus Game Catalog in November



The Rana Daggubati Show to Premiere on Prime Video on November 23

Continue Reading

Science

Amber Found in Antarctica for the First Time

Published

on

By

Amber Found in Antarctica for the First Time

The discovery of amber in Antarctica has been reported for the first time, as detailed in a recent study published in Antarctic Science. Dr. Johann Klages from the University of Bremen, alongside a team of researchers, uncovered this specimen in sediment cores from the Pine Island trough in West Antarctica. This ancient amber, originating from approximately 83 to 92 million years ago during the mid-Cretaceous period, offers valuable insights into prehistoric environmental conditions near the South Pole.

Unveiling the First Antarctic Amber

The study was published in Antarctic Science journal and reveals that the amber, known as Pine Island amber, was retrieved using the MARUM-MeBo70 drill rig during a 2017 expedition on the RV Polarstern vessel. This mid-Cretaceous resin is considered a significant breakthrough as it suggests that a swampy temperate rainforest, dominated by coniferous trees, thrived in the region during a much warmer period in Earth’s history. According to Dr. Henny Gerschel from the Saxon State Office for the Environment, Agriculture and Geology, the amber likely contains tiny fragments of tree bark, preserved through micro-inclusions. Its solid, translucent quality indicates that it was buried close to the surface, protecting it from thermal degradation.

Insights into Prehistoric Forest Ecosystems

The presence of pathological resin flow within the amber offers clues into the defence mechanisms used by ancient trees against environmental stressors like parasites or wildfires. “This discovery hints at a much richer forest ecosystem near the South Pole during the mid-Cretaceous,” Dr. Klages explained, noting the resin’s defensive chemical and physical properties that protected it from insect attacks and infections.

Reconstructing Ancient Antarctic Environments

The amber’s discovery marks a key step in reconstructing ancient polar climates, supporting the idea that temperate forests once spanned across all continents. Researchers aim to explore further by analysing whether signs of past life are preserved in the amber. This study, beyond unearthing Antarctic amber, opens new opportunities to deepen understanding of Earth’s climatic past and the adaptability of prehistoric ecosystems.

Continue Reading

Trending