Connect with us

Published

on

Space start-up Skyroot Aerospace on Tuesday unveiled its indigenously built Vikram-1 rocket which is expected to deliver satellites to low earth orbit early next year. 

Science and Technology Minister Jitendra Singh also inaugurated ‘The MAX-Q Campus’, the new headquarters of the start-up at the GMR Aerospace and Industrial Park at Mamidipally in South Hyderabad.

Singh toured the Skyroot headquarters spread across 60,000sqft and billed as the country’s largest private rocket development facility under one roof.

Vikram-1 is a multi-stage launch vehicle with a capacity to place around 300 kg payloads in Low Earth Orbit. It is an all-carbon-fibre-bodied rocket that can place multiple satellites into orbit and features 3D-printed liquid engines. Planned to be launched in early 2024, Vikram-I will be Skyroot’s second rocket, after the successful launch of the Vikram-S rocket on November 18 last year.

Skyroot’s new headquarters houses integrated design, manufacturing and testing facilities for building space launch vehicles, and design space for the 300-member strong workforce. “Every rocket, during its travel to space, has to push through a point of maximum stress called ‘Max-Q’. Our MAX-Q headquarters serves as a powerful symbol of our unwavering commitment to pushing boundaries and accomplishing the extraordinary, all in pursuit of our mission to Open Space For All,” Pawan Chandana, co-founder and CEO of Skyroot Aerospace said.

“Skyroot is not only an example of India’s superlative talent and scientific acumen but it also has a message for all of us that a huge potential was lying dormant for several decades before Prime Minister Narendra Modi came and broke the taboos of the past and opened India’s Space Sector for Public Private Partnership (PPP),” Singh said. The unveiling of Vikram-1 space launch vehicle on the same day as the company’s new headquarters inauguration is a moment of great pride, said Bharath Daka, Co-Founder and COO of Skyroot.

“Our design prowess and cutting-edge home-grown technology have been integral to the creation of Vikram-1. As we eagerly prepare for the early 2024 launch, we will keep sharing further updates on the orbital mission with Vikram-1,” Daka said.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Chandrayaan-4 Mission Gets Approval, Will Return to Earth This Time

Published

on

By

Chandrayaan-4 Mission Gets Approval, Will Return to Earth This Time

Chandrayaan-4 mission has received approval from the Union Cabinet, led by Prime Minister Narendra Modi, on Wednesday. This marks another significant milestone in India’s lunar exploration efforts. Unlike previous missions, Chandrayaan-4 will not only aim for a successful landing on the Moon but will also focus on returning to Earth. This mission will demonstrate critical technologies that will allow for lunar samples to be collected, brought back to Earth, and studied. It represents an essential leap toward India’s long-term goal of landing on the Moon with humans by 2040.

Chandrayaan-4 to Develop Return Technologies

Chandrayaan-4 follows the successful Chandrayaan-3 mission and aims to further advance India’s capabilities in space. The mission will focus on developing technologies essential for docking, undocking, landing, and safe return from the Moon. Collecting lunar samples will also be a key feature, as India moves closer to a full-scale manned mission in the coming decades. The government’s vision includes an Indian Space Station by 2035, followed by human landings on the Moon by 2040.

Mission Details and Industry Involvement

The mission will be completed within 36 months of approval, with ISRO leading the development and launch. It will involve participation from both industry and academia. A budget of ₹2104.06 crore has been allocated for spacecraft development, launch vehicle missions, and deep space support.

This includes costs for special tests and design validation. High employment potential is expected in associated sectors due to this mission.

Aiming for Self-Sufficiency in Space Technologies

Chandrayaan-4 is set to make India self-reliant in crucial space technologies, helping the nation prepare for future manned missions and lunar explorations. The mission will also involve science meets and workshops to include Indian academia and ensure significant contributions to the analysis of lunar samples.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Moto G85 5G Could Soon Be Available in Two New Colour Options in India



Lumma Stealer Malware Being Spread to Windows Devices via Fake Human Verification Pages, CloudSEK Says

Continue Reading

Science

Ancient Barracks Unearthed With Egyptian Pharaoh Inscribed Sword

Published

on

By

Ancient Barracks Unearthed With Egyptian Pharaoh Inscribed Sword

A recent excavation in Egypt has uncovered a 3,200-year-old military barracks containing a treasure trove of ancient artefacts, including a sword inscribed with the name of Pharaoh Ramesses II. This discovery sheds light on Egypt’s military operations during Ramesses II’s reign, a time when threats from the Libyans were growing. The barracks also contained storerooms for grain, ovens for baking, and pottery filled with animal bones, including fish. Additionally, archaeologists found cow burials at the site, leading experts to suggest these animals were used for food.

Discovery of Bronze Sword and Limestone Blocks

Among the most significant finds was a bronze sword inscribed with Ramesses II’s name, discovered in a small room near what might have been a defensive position. According to Ahmed El Kharadly, an archaeologist with the Egyptian Ministry of Tourism and Antiquities, this suggests the sword was intended for combat and not merely ceremonial use.

The excavation also uncovered two limestone blocks with hieroglyphic inscriptions, one bearing the name of Ramesses II and the other referring to an official named Bay.

Strategic Military Location

The barracks were located along a military road in the northwest Nile Delta, a strategic point where Egyptian forces could defend against potential invasions from the western desert and the Mediterranean. The location of this site aligns with historical accounts indicating rising tensions between Egypt and Libyan groups.

Professor Anthony Spalinger from the University of Auckland noted that the garrison likely played a key role in controlling access to Egypt during this period.

Significance of the Discovery

Peter Brand, a history professor at the University of Memphis, highlighted the importance of the find for understanding the military strategy of Ramesses II. This well-preserved barracks offers rare insights into the logistics of Egypt’s armed forces at the time.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung One UI 7 Update Reportedly Being Tested by Subsidiaries Ahead of Beta Release



NASA James Webb Space Telescope Challenges Assumptions Made by Standard Cosmological Model

Related Stories

Continue Reading

Science

A Wobble from Mars? It Could Be Dark Matter, Study Reveals

Published

on

By

A Wobble from Mars? It Could Be Dark Matter, Study Reveals

MIT physicists have put forward a theory that the wobble in Mars’ orbit could be caused by primordial black holes, which may constitute dark matter. According to the research, these tiny black holes formed after the Big Bang and could be passing through our solar system, affecting the orbit of planets like Mars. David Kaiser, a professor of physics at MIT, suggests that the technology we have today could detect this slight shift in Mars’ orbit, which would be a significant breakthrough in understanding dark matter.

The Role of Primordial Black Holes

The study published in the journal Physical Review D suggests that dark matter could be made up of these primordial black holes, which are different from those formed from collapsed stars. These microscopic black holes may exert enough gravitational force to impact planetary orbits.

MIT’s team, including David Kaiser and Sarah Geller, used simulations to predict that these black holes pass through the solar system every decade or so. Their calculations show that even a black hole the size of an asteroid could influence Mars’ orbit.

Detecting the Wobble

Mars is an ideal candidate for this study because of its precise telemetry data. Instruments currently track its position with an accuracy of about 10 centimetres. A passing primordial black hole would cause Mars to deviate slightly from its regular orbit. Sarah Geller, a postdoctoral researcher at the University of California, Santa Cruz, told Phys.org that while Earth and the Moon might also be affected, the data for Mars is clearer, making it easier to detect any potential anomalies.

What This Could Mean for Dark Matter Research

If such a wobble is detected, it could confirm the presence of primordial black holes and offer new insights into dark matter. The research highlights the need for precise observations and collaboration with experts in solar system dynamics to explore this phenomenon further.

Continue Reading

Trending