Connect with us

Published

on

Polestar has announced that it will create two large trial virtual power plants in California and Gothenburg, Sweden, to examine how Polestar 3’s vehicle-to-grid capability could be leveraged to help stabilize grids and earn money for EV owners while their vehicle is parked.

We’re at Polestar Day in Santa Monica today, where the company is showcasing its future plans to media, investors and owners. For more news from the day, check out our Polestar Day News Hub.

Vehicle to grid, or V2G, is a concept in EVs that allows a vehicle to not only consume energy from the electrical grid, but also to discharge its batteries back into the grid to provide energy when needed.

This is all well and good on a single vehicle basis, but when you combine several vehicles across a large fleet, it has the potential to help stabilize grids by acting as large scale, immediately-dispatchable distributed energy storage.

These collections of distributed batteries have been referred to as “virtual power plants,” and they allow home batteries to take the place of “peaker” electricity plants, which typically run on fossil gas and are highly expensive and polluting. Tesla has launched several of these in various territories, including one in Puerto Rico that could become the world’s largest, and one that just recently got rolled out in San Diego.

But Tesla’s virtual power plants only combine stationary Powerwalls together, which each have a total energy capacity of 13.5kWh. Meanwhile, electric cars typically have much larger batteries than this, and could thus provide a lot more power to the grid, but Teslas don’t have bidirectional charging (and they’re being kinda noncommittal about it).

Enter, then, the Polestar 3. Polestar’s upcoming Polestar 3 SUV will have all the necessary hardware for V2G on release, along with a massive 111kWh battery, the same capacity as more than 8 Powerwalls. And Polestar is now examining how it can use those vehicles to serve as a virtual power plant.

Today at Polestar Day in Santa Monica, Polestar announced that it will run two pilot virtual power plant programs, one in Gothenburg, Sweden, where the company is headquartered, and one in California.

It is partnering with local grid operators in Gothenburg and with the California Energy Commission to study V2G use in the two areas, and try to create plans that can be used across regions. Both studies are being funded by Vinnova, a Swedish government agency that funds R&D projects.

These projects will link all participating Polestar 3 vehicles into a central system that calculates the total battery capacity available and will discharge it to the grid based on demand, but also taking into account battery longevity on the vehicles.

Not only does a system like this help the grid, but it can also help owners make money. When “demand response” events happen and virtual power plants are called on, it’s often when electricity is the most expensive, and therefore, the most profitable to sell back to the grid.

Vehicle-to-grid has the potential to not only benefit individual customers, but whole communities. The average car is parked 90% of the time. With the bi-directional charging capabilities of Polestar 3 and the Polestar VPP, we can explore business models and community solutions that can unlock the true potential of V2G and enable owners to support the energy transition when they don’t need their car for driving.

Thomas Ingenlath, Polestar CEO

For example, in the most recent heat wave in California, wholesale electricity prices got up to around $2,000/MWh, because grid operators were desperate to buy electricity at any price in order to keep the lights on. If that number doesn’t mean anything to you, the current spot price of electricity while I’m writing this article is $56/MWh. So grid operators were paying almost 40 times as much for electricity during that event as they are on a normal November night.

At $2,000/MWh, you could theoretically make over $200 by discharging an entire Polestar 3 battery into the grid. Compare that to the normal cost of charging up, which is somewhere in the $20-$30 range overnight in California, and you can see how this could be a profitable venture.

Powerwall owners have already seen the effects of this, with owners making up to $500 over the course of the first year of Tesla’s virtual power plant in California.

V2G technologies turn EVs into virtual power plants, making homes and the grid more resilient while putting money into the pockets of drivers. The CEC is excited to have Polestar partner with innovators in California to advance their V2G plans

Commissioner Patty Monahan, California Energy Commission

But with vehicles, there are other considerations. Since vehicles are typically used to get places, rather than used specifically for home energy storage like home batteries are, this means that the needs of the grid and the desire for profit must be balanced with… using the vehicle for its intended purpose.

Further, V2G requires additional hardware off the vehicle, allowing homes to feed energy back into the grid, which is not generally the direction that electricity goes in. This is why it has mostly been trialed in fleets (as Nissan and Fermata have done with the Leaf), and in home battery/solar installations where homeowners are installing grid interconnects anyway.

Because of these two barriers, V2G has been more of a dream than a reality for many years, talked about as a theoretical future technology by the EV faithful but without many tangible applications of it in real life.

So Polestar’s trial will see how practical it is for vehicles to be used for this purpose. Since vehicles are parked most of the time, they can be connected and ready for use by the grid. But Polestar will have to see how owner behavior can contribute to this, and how much juice they’ll be able to pull from each vehicle before owners decide they need that range to pick up the kids from soccer practice.

For this last point, Polestar has the benefit of having control over its vehicle software, such that an app could be designed where users can set their own parameters for when and how much they want their vehicle to be discharged during demand response events. Then the system can automatically call on any plugged-in vehicles through the internet and draw whatever owners want to contribute to the cause.

All of this said – while the Polestar 3 does include hardware for V2G, that doesn’t mean the software is included right out of the gate. Polestar says that a software update to enable bidirectional charging will come later, after this study finds the best solutions for consumer adoption and a business model that works for the system. So you’ll have to stay tuned for the results of the trial before you start using your Polestar to save the grid.

The trial begins in the first half of 2024 in Gothenburg, and will run for two years, and Polestar aims for it to be one of the largest V2G pilots in Europe. As for California’s pilot, a “pre-study” will begin in December, and run until October of next year, to decide on a roadmap of how to implement V2G in California.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Economists, experts call for governments to ditch hydrogen, go fully electric

Published

on

By

Economists, experts call for governments to ditch hydrogen, go fully electric

In a joint statement, French and German economists have called on governments to adopt “a common approach” to decarbonize European trucking fleets – and they’re calling for a focus on fully electric trucks, not hydrogen.

France and Germany are the two largest economies in the EU, and they share similar challenges when it comes to freight decarbonization. The two countries also share a border, and the traffic between the two nations generates major cross-border flows that create common externalities between the two countries.

At the same time, the EU’s transport sector has struggled to reduce emissions at the same rate as other industries – and road freight in particular is a major contributor to harmful carbon emissions issue due to that industry’s heavy reliance on diesel-powered trucks.

And for once, it seems like rail isn’t a viable option:

Advertisement – scroll for more content

While rail remains competitive mainly for heavy, homogeneous goods over long distances. Most freight in Europe is indeed transported over distances of less than 200 km and involves consignment weights of up to 30 tonnes (GCEE, 2024) In most such cases, transportation by rail instead of truck is not possible or not competitive. Moreover, taking into account the goods currently transported in intermodal transport units over distances of more than 300 km, the modal shift potential from road to rail would be only 6% in Germany and less than 2% in France.

FRANCO-GERMAN COUNCIL OF ECONOMIC EXPERTS (FGCEE)

That leaves trucks – and, while numerous government incentives currently exist to promote the parallel development of both hydrogen and battery electric vehicle infrastructures, the study is clear in picking a winner.

“Policies should focus on battery-electric trucks (BET) as these represent the most mature and market-ready technology for road freight transport,” reads the the FGCEE statement. “Hence, to ramp-up usage of BET public funding should be used to accelerate the roll-out of fast-charging networks along major corridors and in private depots.”

The appeal was signed by the co-chair of the advisory body on the German side is the chairwoman of the German Council of Economic Experts, Monika Schnitzer. Camille Landais co-chairs the French side. On the German side, the appeal was signed by four of the five experts; Nuremberg-based energy economist Veronika Grimm (who also sits on the National Hydrogen Council, which is committed to promoting H2 trucks and filling stations) did not sign.

You can read an English version of the CAE FGCEE joint statement here.

Electrek’s Take

Hydrogen-sceptical truck maker MAN to produce limited series of 200 vehicles with H2 combustion engines
MAN hydrogen semi; via MAN Trucks.

MAN Trucks’ CEO famously said that it was “impossible” for hydrogen to compete with BEVs, and even committed to building 200 hydrogen-powered semi truck to prove out that hypothesis.

He’s not alone. MAN’s board member for research and development, Frederik Zohm, said that the company is the one saying hydrogen still has years to go. “(MAN) continues to research fuel cell technology based on battery electrics,” he said, in a statement quoted by Hydrogen Insight, before another board member added that, “we (MAN) expect that, in the future, we will be able to best serve the vast majority of our customers’ transport applications with battery-electric trucks.”

With companies like Volvo and Renault and now Mercedes racking up millions of miles on their respective battery electric semi truck fleets, it’s no longer even close. EV is the way.

SOURCE | IMAGES: CAE FGCEE; via Electrive.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Quick Charge | the terrifying Trump tariffs are finally upon us!

Published

on

By

Quick Charge | the terrifying Trump tariffs are finally upon us!

On today’s tariff-tastic episode of Quick Charge, we’ve got tariffs! Big ones, small ones, crazy ones, and fake ones – but whether or not you agree with the Trump tariffs coming into effect tomorrow, one thing is absolutely certain: they are going to change the price you pay for your next car … and that price won’t be going down!

Everyone’s got questions about what these tariffs are going to mean for their next car buying experience, but this is a bigger question, since nearly every industry in the US uses cars and trucks to move their people and products – and when their costs go up, so do yours.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.

Advertisement – scroll for more content

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

SunZia Wind’s massive 2.4 GW project hits a big milestone

Published

on

By

SunZia Wind’s massive 2.4 GW project hits a big milestone

GE Vernova has produced over half the turbines needed for SunZia Wind, which will be the largest wind farm in the Western Hemisphere when it comes online in 2026.

GE Vernova has manufactured enough turbines at its Pensacola, Florida, factory to supply over 1.2 gigawatts (GW) of the turbines needed for the $5 billion, 2.4 GW SunZia Wind, a project milestone. The wind farm will be sited in Lincoln, Torrance, and San Miguel counties in New Mexico.

At a ribbon-cutting event for Pensacola’s new customer experience center, GE Vernova CEO Scott Strazik noted that since 2023, the company has invested around $70 million in the Pensacola factory.

The Pensacola investments are part of the announcement GE Vernova made in January that it will invest nearly $600 million in its US factories and facilities over the next two years to help meet the surging electricity demands globally. GE Vernova says it’s expecting its investments to create more than 1,500 new US jobs.

Advertisement – scroll for more content

Vic Abate, CEO of GE Vernova Wind, said, “Our dedicated employees in Pensacola are working to address increasing energy demands for the US. The workhorse turbines manufactured at this world-class factory are engineered for reliability and scalability, ensuring our customers can meet growing energy demand.”

SunZia Wind and Transmission will create US history’s largest clean energy infrastructure project.

Read more: The largest clean energy project in US history closes $11B, starts full construction


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending