For years, the US electric motorcycle market was dominated by $20,000+ flagship models. While those bikes are still leading the pack, a new wave of lower-cost commuter electric motorcycles has expanded the market’s reach. The latest such bike, the Ryvid Anthem, has recently expanded its deliveries after production began earlier this year. And with a price tag under half of the major flagship electric models, it’s opening the door to more riders than ever before.
After its announcement and unveiling last year, the Ryvid Anthem became one of the most hotly anticipated electric motorcycles in a growing commuter class of middleweight machines.
It featured several innovative features, including the ability to electronically raise and lower the seat by 4″ (10 cm), even while riding. The frame also features innovative folded metal construction that results in a lighter weight and easier-to-produce assembly. At 313 lb (142 kg), the Anthem is considerably lighter than several other electric motorcycles.
Deliveries of the new motorcycle officially began just a few months ago, and bikes have now been shipped across the US from Florida to Washington. Some California owners have reported that the LA-based Ryvid team personally delivered their bikes.
Now, many of those early reservation holders are beginning to share their experiences with the new bikes.
The Anthem is officially listed as having a top speed of “75+ mph” (121 km/h), and early reviews are confirming that “plus” qualifier is legit.
“I was able to get on the freeway and comfortably hit 82 miles an hour with what seemed like a bit more leftover on top. Although sustained highway speeds drain the battery like crazy, which is to be expected.”
Ryvid Anthem fresh off the delivery trailer (source: Reddit)
Other riders have commented on the range, indicating that the company’s range estimates based on various speeds have proven to be fairly accurate.
According to Ryvid, the 4.3 kWh battery offers an estimated urban range of around 75 miles (121 km), though various factors such as rider weight and terrain can impact that figure. When ridden at a constant speed of 55 mph (88 km/h), the estimated range drops to around 46 miles (74 km), according to the company. At a faster constant speed of 70 mph, the estimated range is further reduced to around 35 miles (56 km).
That obviously limits the role of the Anthem for largely commuting-style and shorter recreational rides. There are plenty of electric motorcycles designed for touring, but this isn’t one of them. And that appears to match how many of the first customers are reporting their usage, largely as commuter bikes to work and back.
Charging can be done from either a 110VAC or 220VAC source and uses an on-board 3 kW charger included in the battery’s casing. While many riders charge up on a conventional wall outlet in their garage, level 2 public chargers can be used with a J-plug adapter. 220V charging up to 80% capacity takes around 1.25 hours, while a 110V outlet requires around twice as long.
The battery is also removable for charging off of the bike using its built-in charger. That means riders only need an electrical cord to charge at any wall outlet. The battery’s removal process is tool-less, solving a key issue with other motorcycles that featured “removable” batteries that required several tools to access the battery. Wheels under the battery and a fold-out handle allow it to be rolled like a piece of luggage so riders don’t have to carry the 87 lb (39 kg) battery. Theoretically, riders could roll the battery into a coffee shop and charge it under the table while having lunch.
The removal process is also made easier by the battery being leveraged into place, meaning owners don’t have to lift the entire weight of the battery.
Owners can even apparently ride the battery itself, though it unfortunately isn’t powered. Thus, flatland or downhill battery riding is probably the only option for now.
One downside to the bike that several owners have mentioned is the small size of the glovebox. The storage compartment is built into the top of the “tank” area and measures around 5 in x 5 in x 1.5 in (approximately 13 cm x 13 cm x 4 cm). However, it is stair-stepped and has a shallower section. A USB port inside the compartment allows a phone to be recharged, but the storage compartment is smaller than many of today’s large smartphones.
The compartment is said to be large enough for keys or a wallet but not bulkier or longer items.
The storage lid also latches closed with a non-locking mechanism, though some handy riders have found a way to replace it with a keyed lock.
Ryvid Anthem glovebox storage area (source: Reddit)
Electrek’s Take
It’s been fun following the Ryvid Anthem’s path from production to deliveries. The bike is US-designed and built (though with several foreign-made parts, like most cars/motorcycles made in the US). Supporting locally made products is important for many people, so this is a very interesting addition to the market.
The bike seems to have a great compromise between performance and cost. At US $7,800, the original launch price was hard to beat in the electric space. Now at US $8,995, it’s a bit of a larger ask but is still several thousand dollars under the price of models from leading companies like Zero andLiveWire.
Sure, you can buy a gasser for less, but that’s not really the point. The Anthem has proved popular among both experienced and new riders, especially thanks to its approachability for riders who don’t have gas bike experience.
I really don’t need another motorcycle, but ooooooh I’m getting dangerously tempted by the Anthem.
It’s finally happening. After years of promises, missed timelines dating back to the “Autonomy Day” in 2019, and endless iterations of “Full Self-Driving” (FSD), a Tesla vehicle has been spotted driving on public roads in Austin without anyone in the driver’s seat or a safety monitor in the passenger seat.
Elon Musk has confirmed that Robotaxi testing has officially commenced. This is undeniably a step forward for the company’s autonomy ambitions.
But it is also a terrifying leap of faith, given the complete lack of safety data proving the system is ready for this.
The sighting, captured over the weekend by locals in Austin, shows what appears to be a specially outfitted Model Y, presumably a testbed for the upcoming dedicated Robotaxi platform, navigating city streets. The steering wheel is turning, the car is moving, and the driver’s seat and front passenger seat are empty:
Advertisement – scroll for more content
Following the online buzz surrounding the sighting, Elon Musk took to X to confirm the obvious:
“Testing is underway with no occupant in the car.”
In isolation, this is exciting news. It suggests Tesla has reached an internal confidence level in their latest FSD builds for Robotaxi (not in consumer vehicles) where they feel comfortable pulling the human monitor.
It’s the tangible progress toward the driverless future many Tesla owners bought into years ago.
However, there’s still a lot of room for concerns.
Tesla has, to date, never released comprehensive, verifiable data proving that its FSD system is safer than a human driver. We get anecdotal evidence, curated video clips, and high-level statistics about “miles driven,” but not the granular disengagement data that competitors like Waymo provide to regulators and the public.
In fact, the data we do have, based on incident reports submitted to the NHTSA under their Standing General Order regarding ADS and ADAS systems, paints a worrying picture.
The data pointed to Tesla’s Robotaxi pilot in Austin having a crash every ~62,000 miles, significantly higher than the human average, despite a safety monitor inside the car that should have prevented further crashes.
Think about that for a second. The current fleet requires human intervention to avoid crashes. We know this. If human interventions are currently preventing accidents, common sense dictates that removing the human without a massive, documented improvement in the system’s base capability will lead to more incidents.
Tesla seems to be skipping the “prove it’s safe” phase and jumping straight to the “deploy it” phase.
I want Tesla to succeed here. A functional, scalable Robotaxi network would be a civilization-level improvement in transport. Seeing a driverless Tesla on public roads might feel like a visceral milestone, proof that the technology is advancing.
But “advancing” is not the same as “safe.”
I have serious concerns about the fact that Tesla has consistently avoided releasing verifiable, valuable data on the safety of FSD or its Robotaxi pilot program.
We have to try ourselves to match Tesla’s sparse release of Robotaxi mileage to the limited crash data reported to NHTSA. And that doesn’t look very good for Tesla.
So far, and even with this sighting, the Robotaxi program in Austin seems more of a marketing effort than the true first step toward scaling a driverless ride-hailing service. It looks like an effort to manufacture a win while Waymo rapidly scales its commercial driverless system.
FTC: We use income earning auto affiliate links.More.
The Cat 793 XE Early Learner battery-electric haul trucks deliver all the performance of its diesel-powered siblings without the noise, vibrations, and harmful emissions – and now, they’re being put to the test at BHP’s iron ore mine in Australia.
Part of a collaborative effort between BHP and Rio Tinto to help decarbonize BHP’s Jimblebar iron ore mine in the Pilbara, these 240-ton Cat 793 XE Early Learner electric haul trucks represent a major step toward a more sustainable future in mining, designed to deliver zero exhaust emissions while maintaining productivity and performance.
“Powering up our first battery-electric haul trucks in the Pilbara is an important step forward on the mining industry’s road to decarbonization,” says BHP Western Australia Iron Ore Asset president, Tim Day. “Replacing diesel isn’t just about changing energy sources, it’s about reimagining how we operate and creating the technologies, infrastructure, and supply chains to transform mining operations. These trials will help us understand how all the pieces of the puzzle fit together: the battery technologies, generation and charging infrastructure, power management, as well as the supply chains to potentially deliver this at scale.”
Decarbonisation of Pilbara iron ore operations will rely on technology advancements and breakthroughs in research and development, which is why BHP and Rio Tinto are working closely with Caterpillar to accelerate their fleets’ transition to electric power.
Despite the urgency, however, they need to get it right or risk huge disruptions that will eat up any projected efficiency gains. “A significant shift like this demands a strong commitment to research and development, coupled with collaboration across the industry,” adds Day. “This is going to take time to get right, which is why trials like this one with Rio Tinto and Caterpillar are so critical.”
Caterpillar 793 XE Early Learner
793 XE Early Learner; via Caterpillar.
The big Caterpillar haul truck is powered by a 564 kWh lithium iron phosphate (LFP) battery pack that sends electrons to a 480 kW (645 hp) electric motor that kicks out an undisclosed amount of torque – but which is more than capable of hauling 250 tons of truck and payload at the same 38 mph to speed as its 2,650 hp diesel-powered bretheren.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
A few weeks ago, we talked about some real-world numbers shared by Redditors who added a rooftop solar system to their homes. Not to be outdone, Electrek readers took to the comments to share their own real-world solar numbers. Here are some of the best!
That original post, which you can read here, was inspired by a Reddit user going by DontBuyBitcoin who shared a screenshot on r/Solar indicating that their newly-installed ~11.5 kW system produced over 1,700 kWh of electricity in October. “Pretty surprised by the production of the system I got,” writes DontBuyBitcoin. “11.48KW. I cant wait to see what JUNE-AUGUST [2026] going to look like 😍 I wish SolarEdge will make their app better looking with more functionality.”
Other Redditors were quick to share in the enthusiasm, but our Electrek readers weren’t going to be outdone, and shared their own results in the comments section.
I’ve got a 49 panel, 16.5 kW system just outside Austin, TX, and while it’s expensive ($320/mo), I produce much more power than I use each month. But with 2 EVs, a hot tub, and air conditioning in a Texas summer, I’m not mad I have all this. On a current sunny day, I’m producing about 65 kWh. I top out around 107 kWh on a long but somehow not hot day.l in late spring or early fall (whatever that means in Texas).
Another reader, Craig Morrow, had a much smaller system at “just” 6.5 kW compared to David’s 16.5 kW deal, but still put up some highly respectable numbers.
Advertisement – scroll for more content
My 6.5 kw PV generates from 16 kwh/day (winter) to 38 kwh/day (late spring). Between the efficiency of my house and my consumption habits, my usage averages 5-6 kwh per day. Went all-in on passive and active solar when I built the house ten years ago, an investment which has long since paid for itself with no heating or utility bills, plus having battery storage means no worries about power outages when the grid goes down. A great feeling to be energy independent!
Craig had the top comment with twenty upvotes, but he wasn’t the only reader to see some big efficiency gains with home solar. Several of you posted about the cost of your system, and when you’d begin to see an ROI with the savings you were seeing.
My ROI on a $42k system ($30k with the IRA tax credit) was calculated to be 15 years assuming a 4% yearly rate increase. Without the tax credit it would likely be 20+ years. It makes no sense financially. Interestingly, Europeans pay a lot less for similar size systems. Why is that?
Another commenter, Leonard Bates, was also seeing great returns – but took things a step further by doing some extra math to compare the cost of fueling up his car with gas vs. topping it off with electrons generated by his home solar system.
It is hard for the average Joe to understand electricity production numbers, so I have reduced our experience into dollars. We have a 8.8 kWh rooftop system and two EVs that (other than a few vacation trips a year) are charged at home. We are retired, so we can charge during the day. Bottom line, we saved over $4,000 by not buying gasoline last year (drove ~41,000 miles). Electric bills, with the load of the EVs, is basically a breakeven. The system cost us about $22,000, so a breakeven on the system of about six years and then free electricity for another 20, until the panels need to be replace. Plus we are “energy independent” for our cars. If there is turmoil in the Middle East, it doesn’t affect our pocket books.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.