Connect with us

Published

on

Stepping up collaboration, National Aeronautics and Space Administration Administrator Bill Nelson on Tuesday said the US was open to helping India build its own space station. 

On a visit to India, Nelson said the US and India were working on plans to send an Indian astronaut to the International Space Station by the end of next year, while the Indian Space Research Organisation (ISRO) will launch the state-of-the-art joint venture satellite with NASA — NISAR — in the first quarter of 2024.

Nelson met Science and Technology Minister Jitendra Singh here and discussed strengthening cooperation between the two countries in the space sector.

“ISRO is also exploring the feasibility of utilising NASA’s Hypervelocity Impact Test (HVIT) facility for testing Gaganyaan module Micrometeoroid and orbital debris (MMOD) protection shields,” an official statement from the science and technology ministry said.

During the meeting, the two leaders also discussed US President Joe Biden’s offer to send an Indian astronaut to the International Space Station in 2024.

“The selection of astronaut is determined by ISRO. NASA will not make the selection,” Nelson said in an interaction with reporters here.

Nelson urged Singh to expedite the programme related to India’s first astronaut aboard a NASA rocket to the International Space Station.

NASA is identifying an opportunity in the private astronaut mission for Indian astronauts in 2024.

In response to a question, he said the US would be ready to collaborate with India in building the space station if it so desires.

“We expect by that time to have a commercial space station. I think India wants to have a commercial space station by 2040. If India wants us to collaborate with them, of course, we will be available. But that’s up to India,” Nelson said.

Prime Minister Narendra Modi has asked ISRO to aim to build an Indian space station by 2035 and land astronauts on the moon by 2040.

Built at a cost of $1.5 billion (nearly Rs. 12,500 crore), NISAR (NASA-ISRO Synthetic Aperture Radar) is targeted for launch onboard India’s GSLV rocket.

Data from NISAR will be highly suitable for studying the land ecosystems, deformation of solid earth, mountain and polar cryosphere, sea ice, and coastal oceans on a regional to global scale.

ISRO has developed the S-band SAR which was integrated with NASA’s L-band SAR at JPL/NASA. The integrated L & S band SAR is currently undergoing testing with the satellite at the U R Rao Satellite Centre (URSC), Bengaluru with the participation of NASA/JPL officials.

An official statement said ISRO and NASA have formed a Joint Working Group (JWG) on Human spaceflight cooperation and are exploring cooperation in radiation impact studies, micrometeorite and orbital debris shield studies; space health, and medicine aspects.

ISRO is also in discussion with prominent US industries (like Boeing, Blue Origin, and Voyager) on specific items of cooperation and also to explore joint collaborations with Indian commercial entities.

A concept paper on the Implementing Arrangement is under consideration between ISRO and NASA. After a few iterations, both sides arrived at a mutually agreed draft and the same is processed for intra-governmental approvals, the official statement said. 


Is the iQoo Neo 7 Pro the best smartphone you can buy under Rs. 40,000 in India? We discuss the company’s recently launched handset and what it has to offer on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Published

on

By

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Reports indicate that for three days this summer – July 9, July 22 and August 5 – Earth’s rotation will speed up slightly, trimming 1.3 to 1.5 milliseconds off each day. Imperceptible in everyday life, this shift underscores how the Moon’s position influences our planet’s spin. For reference, the shortest day on record was July 5, 2024, lasting 1.66 milliseconds less than 24 hours. Over billions of years Earth’s rotation has slowly lengthened, but recent data show speedups. Scientists say monitoring these tiny changes is important for understanding Earth’s dynamics and timekeeping.

Causes of Faster Spin

According to timeanddate.com, the shortest-ever recorded day was on July 5, 2024, which was 1.66 milliseconds shy of 24 hours. The acceleration is largely driven by the Moon’s gravity. On those dates (July 9, July 22 and August 5), the Moon will lie far north or south of Earth’s equator, weakening its tidal braking on our planet’s spin. As a result, Earth rotates a bit faster – like spinning a top held at its ends. Seasonal shifts in mass distribution also affect rotation. Richard Holme of the University of Liverpool notes that summer growth and melting snow in the Northern Hemisphere move mass outward from Earth’s axis, slowing the spin in the same way an ice skater slows by extending her arms.

Timekeeping and Technology

Shifts in day length are handled by precise timekeeping. The International Earth Rotation and Reference Systems Service (IERS) monitors Earth’s spin and adds leap seconds to keep Coordinated Universal Time (UTC) in sync with solar time. Normally a second is added when Earth’s rotation slows, but if the spin-up trend continues, scientists have floated a “negative leap second” – removing a second – to realign clocks.

Dr. Michael Wouters of Australia’s National Measurement Institute says this fix would be unprecedented, and notes that even if a few seconds accumulated over decades, it would likely go unnoticed. Dr. David Gozzard of the University of Western Australia points out that GPS satellites, communications networks and power grids rely on atomic clocks synced to nanoseconds, and that millisecond-scale changes in Earth’s rotation are easily absorbed by these systems.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Unpacked 2025: Galaxy Z Flip 7 Launched in India With 4.1-Inch Cover Screen, Exynos 2500 SoC



The Last of Us Part 2 Remastered Gets New Free Update That Allows Players to Experience Story Chronologically

Continue Reading

Science

James Webb Telescope Spots Rare ‘Cosmic Owl’ Formed by Colliding Galaxies

Published

on

By

James Webb Telescope Spots Rare ‘Cosmic Owl’ Formed by Colliding Galaxies

NASA’s James Webb Space Telescope has captured the “Cosmic Owl,” a startling owl-faced pair of colliding ring galaxies. This double-ring structure is exceptionally rare: ring galaxies account for just 0.01% of known galaxies, and two colliding rings is almost unheard of. The JWST image provides an exceptional natural laboratory for studying galaxy evolution. Models suggest the galactic clash began roughly 38 million years ago, meaning the owl-like shape could persist for a long time. A team led by Ph.D. student Mingyu Li of Tsinghua University in China announced the finding.

Spotting the ‘Cosmic Owl’

According to Mingyu Li, the first author of the new study , he and his team found the Owl by combing through public JWST data from the COSMOS field. The twin ring galaxies jumped out thanks to JWST’s infrared imaging. Each ring is about 26,000 light-years across (a quarter of the Milky Way), and each harbors a supermassive black hole at its core – one of the Owl’s eyes.

JWST images show the collision interface – the Owl’s beak – ablaze with activity. ALMA observations find a huge clump of molecular gas there – the raw fuel for new stars – being squeezed by the impact. Radio observations show a jet from one galaxy’s black hole slamming into the gas. Li notes the shockwave-plus-jet have ignited an intense starburst, turning the beak into a stellar nursery.

Rarity and Significance

Ring galaxies are extremely rare (≈0.01% of all galaxies), so finding two in collision is unheard of. Another team independently identified the same system and called it the “Infinity Galaxy”. Li says this event is an exceptional natural laboratory for studying galaxy evolution. In one view, researchers can see black holes feeding, gas compressing and starbursts happening together.

Li points out the collision’s shockwave and jet have triggered an intense starburst in the beak. He says this may be a crucial way to turn gas into stars rapidly, which could help explain how young galaxies built up their mass so quickly. Simulations will clarify the precise collision conditions needed to produce such a rare twin-ring “owl” shape.

Continue Reading

Science

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

Published

on

By

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

The use of conventional robots for industry and hazardous environments is easy for the purpose of control and modelling. However, these are too rigid to operate in confined places and uneven terrain. The soft bio-related roots are better adapted to the environment and manoeuvring in inaccessible places. Such flexible capabilities would need an array of on-board sensors and spacious models which are tailored to each robot design. Having a new and less resource-demanding approach, the researchers at MIT have developed a far less complex, deep learning control system that teaches the soft, bio-inspired robots to follow the command from a single image only.

Soft Robots Learn from a Single Image

As per Phys.org, this research has been published in the journal Nature, by training a deep neural network on two to three hours of multi-view images of various robots executing random commands, the scientists trained the network to reconstruct the range and shape of mobility from only one image. The previous machine learning control designs need customised and costly motion systems. Lack of a general-purpose control system limited the applications and made prototyping less practical.

The methods unshackle the robotics hardware design from the ability to model it manually. This has dictated precision manufacturing, extensive sensing capabilities, costly materials and reliance on conventional and rigid building blocks.

AI Cuts Costly Sensors and Complex Models

The single camera machine learning approach allows the high-precision control in tests on a variety of robotic systems, adding the 3D-printed pneumatic hand, 16-DOF Allegro hand, a soft auxetic wrist and a low-cost Poppy robot arm.

As this system depends on the vision alone, it might not be suitable for more nimble tasks which need contact sensing and tactile dynamics. The performance may also degrade in cases where visual cues are not enough.

Researchers suggest the addition of sensors and tactile materials that can enable the robots to perform different and complex tasks. There is also potential to automate the control of a wider range of robots, together with minimal or no embedded sensors.

Continue Reading

Trending