The Federal Highway Administration announced today that it will seek feedback on how government rules should be updated to account for the new NACS/J3400 charging standard, potentially unlocking $7.5 billion in federal subsidies for the Tesla-developed charging connector.
As part of the Bipartisan Infrastructure Law, the US government has allocated $7.5 billion in subsidies to expand EV charging access. $5 billion of that is through the NEVI program, which is intended to install a nationwide backbone of fast chargers at least every 50 miles along America’s major roads in order to make EV road trips seamless.
But one requirement of that law was that the chargers installed must be accessible by multiple brands of electric car – standard, not proprietary. This requirement is obviously reasonable, but it also seemed targeted at Tesla, a company that had built its own Supercharger network only accessible by Tesla vehicles.
In response to this, Tesla released specifications of its charging connector which it called the “North American Charging Standard.” This was somewhat of an absurd name at the time, given that Tesla was the only company using it.
However, since Tesla is a majority of the US EV market, Tesla’s argument was that most of the cars and most of the DC charging stations in America already used Tesla’s connector, so it should be considered a de facto standard anyway.
But even after momentum was apparent, the White House threw cold water on NACS’ victory, reminding everyone that there are still “minimum standards” within federal charger subsidy rules, and it would have to examine how NACS fulfills those standards, to ensure that the charging network stay accessible and interoperable. A standard isn’t a standard just because one company says it is – it has to be treated like a standard with independent control and verification.
As of today, any DC chargers installed with federal money can have NACS connectors, but must also include CCS connectors.
This led SAE, the professional engineering organization that develops industry standards, to take up the flag of creating a real, independent standard that is no longer in the hands of Tesla, and Tesla obliged by allowing SAE to have control over the process of standardization.
The government will examine how to take advantage of the new SAE NACS/J3400 standard
We covered how the new SAE/NACS standard will solve (basically) every charging problem in one fell swoop last week (click through to learn more about that, I promise it’s more interesting than an article about competing charging standards seems like it would be).
Today’s press release from the Federal Highway Administration announces that it “will soon publish a Request for Information (RFI) to solicit feedback from stakeholders on updating FHWA’s minimum standards and requirements for electric vehicle (EV) charging stations to allow for new technology and continued innovation.”
It also specifically calls out the news of the day, name-dropping Tesla and NACS as the reason for this call to update the government’s minimum standards:
With the implementation of J3400 TM, a new standard for charging EVs published by the Society of Automotive Engineers (SAE), any supplier or manufacturer will now be able to use and deploy the Tesla-developed North America Charging Standard (NACS) connector, which a majority of automakers have announced they will adopt on vehicles beginning in 2025 with adaptors available for current owners as soon as next spring.
In addition to that, the Biden Administration and the Joint Office of Energy and Transportation (which worked with SAE to develop the J3400 standard) put out a press release today applauding the new standard, celebrating how quickly the process was finished, and pointing to its potential future inclusion in the FHWA’s requirements.
Electrek’s Take
Firstly, I’d like to make note of the issue that many Tesla fans had for a while about the White House not properly acknowledging Tesla. I always thought this was silly, more of a reflection of the massive chip on the shoulder of the egomaniac who is the titular head of the company in question than of actual reality.
When the Biden administration said “hold up, not so fast” early in the NACS process, it made many think that Biden was once again slighting Tesla, but today’s news I think shows that that was never the case. The government simply wanted it to be a proper standard, and now it is (and that process went really fast), and on the same day that it became a proper standard, the government announced that it’s ready to treat it like one. That all seems fair to me.
While we don’t yet know what the minimum standards will change to, it seems clear that this is an effort to update them to coalesce around NACS. Which is great news, because charging will only get better when everyone just rips the band-aid off and goes with one charging standard – and a more robust one than J1772 at that.
But this leads to the question: will the government fully embrace NACS, thus potentially leaving some of the installed base of CCS-enabled cars out of luck in the longer term? Or will it hamstring deployment to some extent, requiring CCS (which is effectively now a dead standard) and therefore not full taking advantage of the NACS standard’s myriad solutions to charging problems?
But as I stated in that last article, this decision point is also a little ironic, considering NACS’ existence seems to have been spurred on by NEVI in the first place. When the government offered billions of dollars to companies that installed chargers with the requirement that those chargers be useable with multiple vehicles, that’s what got Tesla to finally offer a “standard.”
At the time, it wasn’t really a standard because only Tesla was using it, and it was somewhat of a last-ditch effort to save the Tesla connector. Then, when Ford decided to use NACS, that’s what started all the other dominos falling.
Now, NACS is dominant, but it only happened because of NEVI in the first place – and NEVI now has the difficult decision over whether to embrace the (positive) situation it caused, even if it will give some of the installed base an effective “use-by” date as a shift to NACS will inevitably mean fewer CCS/J1772 chargers over time.
We wish that all of this would have been figured out long ago so we could be done with it by now, but it looks like the solution to all our charging problems is finally nearly at hand.
FTC: We use income earning auto affiliate links.More.
Ford is jumping into the battery energy storage business, betting that booming demand from data centers and the electric grid can absorb the EV battery capacity it says it’s not using.
To achieve this, Ford plans to repurpose its existing EV battery manufacturing capacity in Glendale, Kentucky, into a dedicated hub for manufacturing battery energy storage systems.
Ford pivots from EVs to battery storage for data centers
Ford says it will invest about $2 billion over the next two years to scale the new business. The Kentucky site will be converted to build advanced battery energy storage systems larger than 5 megawatt-hours, including LFP prismatic cells, BESS modules, and 20-foot DC container systems — the kind of hardware increasingly used by data centers, utilities, and large-scale industrial companies.
The company plans to bring initial production online within 18 months, leaning on its manufacturing experience and licensed battery technology. By late 2027, Ford expects the business to deploy at least 20 gigawatt-hours of energy storage annually.
Advertisement – scroll for more content
The move follows a joint venture disposition agreement reached last week between Ford, SK On, SK Battery America, and BlueOval SK. Under the agreement, a Ford subsidiary will independently own and operate the Kentucky battery plants, while SK On will fully own and operate the Tennessee battery plant.
Ford is also planning a separate energy storage play in Michigan. At BlueOval Battery Park Michigan in Marshall, the company will produce smaller amp-hour LFP prismatic cells for residential energy storage systems. That plant is on track to begin manufacturing in 2026, and it will also supply batteries for Ford’s upcoming midsize electric truck — the first model built on the company’s new Universal EV Platform.
Electrek’s Take
Overall, the shift reflects Ford’s broader push toward what it calls “higher-return opportunities.” Alongside taking a step backward to add more gas-powered trucks and vans to its US manufacturing footprint, Ford says it will no longer produce some larger EVs, such as the Lightning F-150, where softer demand and higher costs are resulting from the lack of support for EVs by the Trump administration. (Batteries produced at the Glendale plant were for the all-electric Ford F-150 Lightning. The best-selling electric truck in the US in Q3, before the federal tax credit expired, was the Ford F-150 Lightning, with 10,005 EVs sold, a 39.7% year-over-year increase.)
With tax credits eliminated and regulatory uncertainty, Ford is pivoting to adjacent markets, including grid-scale and residential energy storage, to keep its battery plants running and justify billions in sunk investment.
If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!
Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad
FTC: We use income earning auto affiliate links.More.
Stellantis may have backed away from planned EVs like the all-electric Ram REV and range-topping Dodge Charger Daytona R/T EV, but the company isn’t standing still. A newly awarded patent outlines an innovative, foam-based thermal runaway suppression system that’s built into an EV’s battery pack.
The indisputable fact of the matter is that electric vehicles catch fire far less often — and far less frequently — than their combustion-powered brethren. Still, a number of highly-publicized early Tesla fires and poorly managed recall on the first-gen Chevy Bolt have linked “electric car” and “fire” in the minds of many Americans, and the ones who have been waiting to test the EV waters until a better safety solution came along are going to absolutely love this latest setup from Chrysler parent company Stellantis.
MoparInsiders is reporting on a new Stellantis patent awarded on a proactive battery safety system that’s designed to stop thermal runaway (read: fire) before it can cascade through an entire EV battery pack.
Rather than relying solely on passive barriers or post-event containment, Stellantis’ freshly patented system uses strategically placed foam channels and deployment mechanisms that can flood the affected cells with high insulation foam when abnormal heat is detected in a cell, isolating the problem area and dramatically slowing (if not outright stopping) the chain reaction that leads to catastrophic battery failure.
Advertisement – scroll for more content
The patent describes an electric car battery that, on the outside, will look familiar to EV enthusiasts, but there are some key differences “layered in” around the familiar bits. These include:
A bladder filled with a fire-retardant chemical; located close to the battery cells, typically between the cells and the top of the pack. It’s made from a flexible polymer, so it can be punctured when needed
Two sets of blades; the first aimed at the bladder, ready to pierce it and release the fire-retardant chemical while the second targets specific points on the coolant inlet line, outlet line, or heat sinks to rupture them and release cooling foam directly where it’s needed
Special coolant line sections; designed with small sealed apertures that closed off with a soft plug material that’s easy for the blades to pierce but strong enough to maintain pressure during normal operation
Actuation devices tied to a controller; that push the blades into the bladder and coolant components when a thermal event is detected
Special coolant lines
Fire suppressant cooling lines; via Stellantis.
The system relies on a suite of existing temperature sensors throughout the battery pack, and seems like a viable enough solution to a problem that, while rare, certainly exists — and which looms large over America’s Early Majority tech adopters.
As for me, I think Stellantis should focus on bringing more compelling products to market and stop looking for ways to blame the customer, market, and government for its inability to sell Jeep products that, apparently, have enough markup to cover nearly $30,000 in discounts to help dealers move their metal. I look forward to hearing about your take in the comments.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
It’s official. The all-electric pickup is dead, but Ford is promising the F-150 Lightning EREV will be “every bit as revolutionary” as it shakes up EV plans once again.
Ford reveals next-gen F-150 Lightning EREV
Ford confirmed production of the current F-150 Lightning has ended as part of its updated Ford+ plan, which the company revealed on Monday.
The changes come as part of a broader shift from larger EVs, like the Lightning, to smaller, more affordable models.
While Ford still plans to launch lower-cost EVs based on its Universal EV Platform, the company is expanding its hybrid and extended range electric vehicle (EREV) lineup. By 2030, Ford expects 50% of its global volume to be hybrids, EREVs, and EVs, up from 17% in 2025.
Advertisement – scroll for more content
As part of its new plans, Ford said the next-generation F-150 Lightning will switch to an EREV powertrain. It will be assembled at the Rouge EV Center in Dearborn, Michigan, replacing the current all-electric pickup.
Ford F-150 Lightning production (Source: Ford)
With production of the current-generation Lightning now concluded, Ford is sending workers from the Rouge EV Center to its Dearborn Truck Plant as it doubles down on gas and hybrids.
During its Q3 earnings call last month, Ford said the electric pickup would remain paused following a fire at Novelis’ plant in New York that disrupted aluminum supply.
(Source: Ford)
The F-150 Lightning is a “groundbreaking” vehicle, according to Doug Field, Ford’s chief EV, digital, and design officer, that showed an electric pickup can be a great F-Series.
Field claims the “next-generation Lightning EREV is every bit as revolutionary.” It will still offer 100% electric power delivery, sub-5-second acceleration, an estimated combined range of 700+ miles, and it “tows like a locomotive.”
Ford also plans to replace its electric commercial van for North America with affordable gas- and hybrid-powered versions. It will be assembled at Ford’s Ohio Assembly Plant.
Ford F-150 Lightning production at the Rouge EV Center (Source: Ford)
The move comes as part of Ford’s plans to launch five new affordable vehicles by the end of the decade, four of which will be assembled in the US. Ford also plans to offer gas, hybrid, and EREV options across nearly every vehicle in its lineup by then.
The first vehicle based on Ford’s new Universal EV Platform will be a midsize electric pickup, starting at around $30,000. It’s expected to be about the size of the Ranger or Maverick.
CEO Jim Farley presents the Ford Universal EV Platform in Kentucky (Source: Ford)
The news comes after SK On announced last week that it planned to end its joint venture with Ford to build EV batteries at three US gigafactories.
Ford is now planning to use the wholly owned EV battery plants in Kentucky and Michigan to launch a new battery energy storage business. The company plans to begin shipping BESS systems in 2027, with an annual capacity of 20 GWh.
“The operating reality has changed, and we are redeploying capital into higher-return growth opportunities: Ford Pro, our market-leading trucks and vans, hybrids, and high-margin opportunities like our new battery energy storage business,” CEO Jim Farley said on Monday.
The changes are designed to improve profitability and returns. Ford’s EV business, Model e, is now expected to reach profitability by 2029 with improvements in 2026.
Model e lost another $1.4 billion in Q3, bringing the total to $3.6 billion through September. Around $3 billion was due to its current EVs, while the other $600 million was spent on its next-gen models.
Although sales of the F-150 Lightning dropped 60.8% last month following the expiration of the $7,500 federal EV tax credit, Ford’s electric pickup remained the best-selling pickup in the US through September.
FTC: We use income earning auto affiliate links.More.