Connect with us

Published

on

ISRO will perform the final manoeuvre on Saturday to inject Aditya-L1 spacecraft — the first space-based Indian observatory to study the Sun — into its final destination orbit, some 1.5 million kilometres from the Earth. According to ISRO officials, the spacecraft will be placed in a halo orbit around Lagrange point 1 (L1) of the Sun-Earth system, about 1.5 million km from the Earth. The L1 point is about one per cent of the total distance between the Earth and the Sun.

A satellite in a halo orbit around the L1 point has the major advantage of continuously viewing the Sun without any occultations/eclipses, they said, adding, this will provide a greater advantage in observing solar activities and its effect on space weather in real time.

“This manoeuvre (at around 4pm on Saturday) will bind the Aditya-L1 to a halo orbit around L1. If we don’t do this, there is a possibility that it will continue its journey, maybe towards the Sun,” an ISRO official told PTI on Friday.

The Polar Satellite Launch Vehicle (PSLV-C57) launched the Aditya-L1 spacecraft from the second launch pad of Satish Dhawan Space Centre (SDSC), Sriharikota, on September 2 last year.

After a flight duration of 63 minutes and 20 seconds, it was successfully injected into an elliptical orbit of 235×19500 km around the Earth.

The spacecraft underwent a series of manoeuvres thereafter and headed Sun-Earth Lagrange Point 1(L1), having escaped the Earth’s sphere of influence.

The spacecraft carries seven payloads to observe the photosphere, chromosphere and the outermost layers of the Sun (the corona) using electromagnetic and particle and magnetic field detectors.

“Using the special vantage point L1, four payloads directly view the Sun and the remaining three payloads carry out in-situ studies of particles and fields at the Lagrange point L1, thus providing important scientific studies of the propagatory effect of solar dynamics in the interplanetary medium,” according to the space agency.

The suits of Aditya L1 payloads are expected to provide the “most crucial information” to understand the problem of coronal heating, coronal mass ejection, pre-flare and flare activities and their characteristics, dynamics of space weather, and propagation of particles and fields, officials said.

The major science objectives of the Aditya-L1 mission are:

  • Study of the Solar upper atmospheric (chromosphere and corona) dynamics.
  • Study of chromosphere and coronal heating, physics of the partially ionized plasma, initiation of the coronal mass ejections, and flares.
  • Observe the in-situ particle and plasma environment, providing data for the study of particle dynamics from the Sun.
  • Physics of the solar corona and its heating mechanism.
  • Diagnostics of the coronal and coronal loops plasma: Temperature, velocity and density.
  • Development, dynamics and origin of coronal mass ejections (CMEs).
  • Identify the sequence of processes that occur at multiple layers (chromosphere, base and extended corona) which eventually leads to solar eruptive events.
  • Magnetic field topology and magnetic field measurements in the solar corona.
  • Drivers for space weather (origin, composition and dynamics of solar wind).

Affiliate links may be automatically generated – see our ethics statement for details.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2024 hub.

Continue Reading

Science

Musk’s Neuralink Will Test Brain Chips in Clinical Study in Great Britain

Published

on

By

Musk's Neuralink Will Test Brain Chips in Clinical Study in Great Britain

Elon Musk’s brain implant company Neuralink said on Thursday it will launch a clinical study in Great Britain to test how its chips can enable patients with severe paralysis to control digital and physical tools with their thoughts.

The company is partnering with the University College London Hospitals trust and Newcastle Hospitals to conduct the study, it said in a post on X.

Neuralink said patients living with paralysis due to conditions such as spinal cord injury and a nervous system disease called Amyotrophic Lateral Sclerosis (ALS) qualify to participate in the study.

The company raised $650 million (roughly Rs. 5,676 crore) in its latest funding round last month. It began human trials in 2024 on its brain implant after resolving safety concerns flagged by the US Food and Drug Administration, which had initially rejected Neuralink’s application in 2022.

According to the company, five patients with severe paralysis are currently using its device to control digital and physical tools with their thoughts.

Neuralink, founded in 2016, has raised about $1.3 billion (roughly Rs. 11,360 crore) from investors and is valued at roughly $9 billion (roughly Rs. 78,714 crore), according to media reports, citing PitchBook.

© Thomson Reuters 2025

Continue Reading

Science

MIT Just Proved Einstein Wrong in the Famous Double-Slit Quantum Experiment

Published

on

By

MIT Just Proved Einstein Wrong in the Famous Double-Slit Quantum Experiment

Physicists at MIT conducted a precise version of the renowned double slit quantum experiment, which challenges Einstein’s objections to quantum mechanics. With the help of ultracold atoms and single photons, they have shown the reaction of the long-standing wave-particle duality discussion without traditional spring setups. The researchers ignored the classical apparatus components and allowed nature’s inherent uncertainty to unleash Bohr’s complementarity, as both wave and particle-like behaviour cannot be observed simultaneously. The finding matches the quantum theory and disagrees with Einstein’s local realistic expectations.

MIT’s Quantum Experiment Challenges Einstein’s Classical View

As per Sci Tech Daily, Einstein argued for the deterministic reality, and claimed that the particles must be definite properties irrespective of the observation and that nothing could travel faster than light. With the Copenhagen interpretation, Bohr held the views which posit that only measurement defines the physical reality, along with complementary properties such as wave and particle behaviour, which are exclusive. The result of MIT supports this interpretation by Bohr.

With the removal of spring elements and the intrinsic quantum uncertain reliability of the ultracold atoms, MIT has sidestepped classical interference artefacts. Through this design, the experiment cleanly isolates the quantum effects and makes the result more robust and vague. Their behaviour demonstrates the dual nature when the individual photons pass through this experiment.

Bohr’s Complementarity Confirmed: Nature Obeys Quantum Rules

The findings through this experiment not only give the mechanical predictions and however, but also reinforce the significance of the theorem by Bell. Experiments done by Delft and Aspect have questioned the inequabilities under restricted conditions, strongly discrediting the hidden variable arguments of Einstein.

In a nutshell, MIT’s ultra double-slit experiment provides compelling evidence against the local realism of Einstein but in favour of the indeterminacy of quantum. Through the demonstration of the complementarity of the minimal classical interference, it is clear that the experiment underscores that nature follows the rules of quantum mechanics.

Continue Reading

Science

PSR J0922+0638 Pulsar Keeps Glitching Every 550 Days, Scientists Are Intrigued

Published

on

By

PSR J0922+0638 Pulsar Keeps Glitching Every 550 Days, Scientists Are Intrigued

PSR J0922+0638 is one of the pulsars, which are typically ultradense remains of a massive star that exploded as a supernova. These are quite compact and lie a few miles away; however, they carry more weight than several other suns. Their density infers that the internal matter is packed tightly, and the borders diverge toward the black hole. However, the collapse of these stars is prevented due to the pressure from the quantum forces. Neutrons and protons smash together at the time of extreme densities, and then they create a single gigantic atomic nucleus. However, the core of the neutron stars is still a mystery.

Unraveling the Structure and Rotation of PSR J0922+0638

As per space report, these dense stars act as giant atomic nuclei together with the neutrons and protons pulled together under the gravity. One of the behaviours of pulsars is their rotation, which is stable. For example, PSR J0922+0638 rotates after every 0.43063, and this continues for thousands of years.

Astronomers studied the data from over 22 years to further understand the stability. The data was collected from South Africa’s MeerKAT array and China’s Nanshan Radio Telescope array. Although the changes were minuscule, even less than a billionth, the stars show an energy shift because of the intense physical forces. The scientists found a dozen glitches that we call a little change in the rate of rotation. The glitches followed a cycle in which rotation repeats after every 550 days.

Glitches, Magnetic Cycles, and the Mystery Within Pulsars

Furthermore, due to sudden glitches, a slow and cyclic speeding up and slowing down of the spin of the pulsar was seen during a 500-600-day period. This behaviour made the scientists question the glitches and the time variations of the pulsar, with the unawareness of the exact cause.

The theories put forward by the scientists comprise the magnetic cycle, which is similar to the movement of the superfluid in the star or the sun. Even after these theories, the internal mechanics of a pulsar are speculative. Further, long-term observations are important to know these secrets.

Continue Reading

Trending