Connect with us

Published

on

ISRO will perform the final manoeuvre on Saturday to inject Aditya-L1 spacecraft — the first space-based Indian observatory to study the Sun — into its final destination orbit, some 1.5 million kilometres from the Earth. According to ISRO officials, the spacecraft will be placed in a halo orbit around Lagrange point 1 (L1) of the Sun-Earth system, about 1.5 million km from the Earth. The L1 point is about one per cent of the total distance between the Earth and the Sun.

A satellite in a halo orbit around the L1 point has the major advantage of continuously viewing the Sun without any occultations/eclipses, they said, adding, this will provide a greater advantage in observing solar activities and its effect on space weather in real time.

“This manoeuvre (at around 4pm on Saturday) will bind the Aditya-L1 to a halo orbit around L1. If we don’t do this, there is a possibility that it will continue its journey, maybe towards the Sun,” an ISRO official told PTI on Friday.

The Polar Satellite Launch Vehicle (PSLV-C57) launched the Aditya-L1 spacecraft from the second launch pad of Satish Dhawan Space Centre (SDSC), Sriharikota, on September 2 last year.

After a flight duration of 63 minutes and 20 seconds, it was successfully injected into an elliptical orbit of 235×19500 km around the Earth.

The spacecraft underwent a series of manoeuvres thereafter and headed Sun-Earth Lagrange Point 1(L1), having escaped the Earth’s sphere of influence.

The spacecraft carries seven payloads to observe the photosphere, chromosphere and the outermost layers of the Sun (the corona) using electromagnetic and particle and magnetic field detectors.

“Using the special vantage point L1, four payloads directly view the Sun and the remaining three payloads carry out in-situ studies of particles and fields at the Lagrange point L1, thus providing important scientific studies of the propagatory effect of solar dynamics in the interplanetary medium,” according to the space agency.

The suits of Aditya L1 payloads are expected to provide the “most crucial information” to understand the problem of coronal heating, coronal mass ejection, pre-flare and flare activities and their characteristics, dynamics of space weather, and propagation of particles and fields, officials said.

The major science objectives of the Aditya-L1 mission are:

  • Study of the Solar upper atmospheric (chromosphere and corona) dynamics.
  • Study of chromosphere and coronal heating, physics of the partially ionized plasma, initiation of the coronal mass ejections, and flares.
  • Observe the in-situ particle and plasma environment, providing data for the study of particle dynamics from the Sun.
  • Physics of the solar corona and its heating mechanism.
  • Diagnostics of the coronal and coronal loops plasma: Temperature, velocity and density.
  • Development, dynamics and origin of coronal mass ejections (CMEs).
  • Identify the sequence of processes that occur at multiple layers (chromosphere, base and extended corona) which eventually leads to solar eruptive events.
  • Magnetic field topology and magnetic field measurements in the solar corona.
  • Drivers for space weather (origin, composition and dynamics of solar wind).

Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2024 hub.

Continue Reading

Science

ISS Experiment Shows Moss Spores Can Survive Harsh Space Environment

Published

on

By

A hardy moss species survived 283 days on the outside of the ISS, enduring vacuum, radiation and extreme temperatures. More than 80% of its spores lived and germinated back on Earth. The findings reveal surprising resilience in early land plants and may support future Moon and Mars ecosystem designs.

Continue Reading

Science

NASA’s Perseverance Rover Finds Metal-Rich Rock on Mars: What You Need to Know

Published

on

By

NASA’s Perseverance rover has identified Phippsaksla, a sculpted, metal-rich boulder in Jezero Crater with an unusually high iron-nickel composition. The rock’s chemistry strongly suggests it is a meteorite formed elsewhere in the solar system. Its presence within impact-shaped terrain offers fresh clues about ancient asteroids and helps scientists reconstruct key…

Continue Reading

Science

Asteroid 2024 YR4: Earth Safe, but New Data Shows Small 2032 Lunar Impact Risk

Published

on

By

Asteroid 2024 YR4 has been cleared as an Earth threat, but updated observations show a small chance it could hit the Moon in 2032. Space agencies are monitoring the asteroid closely, expecting new data to narrow uncertainties and determine whether the lunar-impact probability will drop or rise.

Continue Reading

Trending