
Big oil is racing to scale up carbon capture to slash emissions but the challenges are immense
More Videos
Published
1 year agoon
By
admin
A standard drilling rig that Chevron will be drilling its first onshore test well for the 14,000-acre Bayou Bend CCUS project is photographed on Thursday, Feb. 22, 2024 in Winnie area. It is expected to have the capacity to store more than 1 billion metric tons of carbon dioxide in underground geologic structures.
Yi-Chin Lee | Houston Chronicle | Hearst Newspapers | Getty Images
A paper mill in a small Mississippi town could help demonstrate whether capturing carbon dioxide emissions and storing it deep underground is a viable path to fight climate change.
The proposed project at International Paper‘s mill in Vicksburg was chosen by the Department of Energy in February to receive up to $88 million in taxpayer funding. If successful, the system would capture and permanently store 120,000 tons of carbon dioxide annually, the equivalent of 27,000 gas-powered cars, according to the companies behind the project.
Amazon, a partner in the project, sources containerboard from the mill for its boxes and packaging. SLB, the oilfield services giant formerly known as Schlumberger, is designing and engineering the carbon capture system in collaboration with RTI International, a nonprofit that developed the technology.
The Vicksburg paper mill project is just one example of how $12 billion in funding from the 2021 bipartisan infrastructure law is supporting the development of carbon capture technology across the United States, as part of the Biden administration’s efforts to achieve net-zero emissions by 2050.
Carbon capture and storage technology today is expensive, logistically complex and faces controversy over its role in the energy transition and safety concerns in communities where pipeline infrastructure would be expanded.
The Paris-based International Energy Agency has described carbon capture and storage as “critical” to achieve global net-zero emissions, while also warning the oil and gas industry against using the technology as a way to maintain the status quo on fossil fuels. Some climate activists accuse the industry of simply investing in carbon capture as way to extend the use of oil and gas.
The technology typically uses chemical absorption to capture carbon dioxide emitted from the chimney of an industrial plant. The emissions are condensed into a fluid for transport, normally through a pipeline, and are stored thousands of feet below ground in depleted oil wells or geological formations such as saltwater reservoirs.
The challenges to implementing the technology are immense. The world needs to capture more than 1 billion metric tons of carbon dioxide annually by 2030, more than 20 times the 45 million metric tons captured in 2022, according to the IEA. By 2050, the amount of carbon that’s captured needs to reach 6 billion tons — more than 130 times the 2022 level, according to the agency.
But the track record of carbon capture and storage so far has been one of “underperformance,” with only 5% of announced projects having reached a final investment decision, according to the IEA. The industry needs to demonstrate that the technology can operate economically at scale after struggling to ramp up deployment for years, the agency says.
The Vicksburg papermill project is still in an early development stage. SLB is confident that it will prove technologically viable, said Fred Majkut, senior vice president of carbon solutions at the company. The goal is to demonstrate that carbon capture and storage is also economically viable, Majkut said.
“The economic viability of carbon capture and sequestration is a challenge today because the cost of building most plants in order to capture carbon dioxide are very significant,” the executive said. It can cost hundreds of millions of dollars to retrofit an industrial plant, he said.
For International Paper, the Vicksburg project is a potential way to produce lower carbon products for consumers who are climate conscious and a potential opportunity to benefit financially through the sale of carbon credits.
“There are examples in the marketplace where customers have the opportunity to express their preferences economically, whether that’s clicking a button to say they want to abate the carbon emissions for a trip in an Uber or an airplane,” said Adam Miklos, director of low carbon innovation at International Paper.
“Ultimately, it has the potential to reduce our emissions and, if successful, present an opportunity to sell carbon and renewable credits,” Miklos said.
Decarbonizing heavy industry
The Mississippi mill is a snapshot of how the oil and gas industry is trying to demonstrate that carbon capture and storage is a viable tool in the race to slash emissions, after using similar technology for decades to extract oil.
The industry has used carbon storage techniques since the 1970s in a process called enhanced oil recovery, in which carbon dioxide is injected underground to create pressure that pushes more crude toward production wells.
Chevron, Exxon, Baker Hughes and SLB, among others, are now repurposing that expertise, betting that carbon capture and storage will serve a large market of heavy industries such as cement and steel that have few good options right now to slash their emissions.
Total spending on carbon capture and storage projects is expected to reach $241 billion worldwide by 2030 if all announced projects materialize, according Rystad Energy. The United States and the United Kingdom are the leaders, with investments expected to reach $85 billion and $45 billion, respectively, by the end of the decade, according to Rystad.
In the U.S., investment in carbon management technologies more than doubled to $1.2 billion in 2023, the first full year after the passage of the Inflation Reduction Act, according to the Clean Investment Monitor. The law supports the industry with tax credits of up to $85 per ton of emissions captured and stored.
Cement plants, for example, produce emissions not only by burning fossil fuels, but also due to the materials used in the manufacturing process. About two-thirds of the industry’s carbon dioxide emissions come from chemical reactions that occur when breaking down limestone.
Cement is one of the most widely-used products globally, second only to drinking water, and is responsible for about 7% of the world’s carbon dioxide emissions alone, according to the United Nations. Cement and steel together represent about 14% of global emissions, according to the U.N.
“Right now, these types of industries have no way to effectively decarbonize to net zero without carbon capture,” Majkut said. “If they want to produce cement, there will be CO2 emissions simply because of the materials that are being used.”
With carbon storage already a mature commercial business, SLB is trying to tackle the capture side, which presents one of the major hurdles to scaling up the technology due to its high cost, according to Majkut. The solvent that would be used to catch carbon dioxide molecules at the Mississippi mill promises to lower the energy requirements of the capture process and make it more cost effective, he said.
“We’re quite comfortable that in the next 12 to 24 months, we will be coming to market with actually that chemistry as part of our core offering and develop what we call process design packages,” Majkut said.
SLB CEO Olivier Le Peuch has said carbon capture and storage will play a leading role in the company’s annual revenue targets of $3 billion by 2030 and $10 billion by 2040 for its new energy portfolio.
SLB this month announced a nearly $400 million investment in Aker Carbon Capture, a pure-play carbon capture company based in Norway, in an effort to accelerate deployment of the technology at commercial scale.
Competitor Baker Hughes is developing direct air capture technology after acquiring a company called Mosaic Materials in 2022. Baker Hughes has not disclosed the value of the deal.
The technology aims to catch low concentration carbon dioxide emissions, which are harder to capture, directly from the atmosphere as well as from industrial plants. Baker Hughes anticipates the technology will most likely come to market by the end of 2026.
Baker Hughes is targeting up to $7 billion in orders by 2030 for its new energy portfolio, which includes carbon capture and storage technology. The company is forecasting a total market for its new energy business of between $60 billion and $70 billion by the end of the decade.
“By 2030, I do believe we’re going to start to see these technologies start to become reasonably competitive,” said Alessandro Bresciani, senior vice president of climate technologies at Baker Hughes.
Chevron, Exxon building Gulf Coast hubs
The Gulf Coast of the United States, home to enormous oil and gas and other industrial plants, is emerging as a center of carbon capture and storage investments in the U.S.
Jeff Gustavson, vice president of lower carbon energies at Chevron, said the region has the potential to quickly increase use of the technology because of favorable geology for storage located close to high concentration emissions that are easier to capture at a lower cost. Some 100 million tons of carbon dioxide are emitted annually from Houston through to Port Arthur, Texas, Gustavson said.
Chevron and Exxon are targeting $10 billion and more than $20 billion, respectively, of spending on emissions-reducing technologies that include carbon capture and storage in major projects under development along the Gulf Coast.
Exxon over the past two years has entered agreements to capture carbon emissions from ammonia and fertilizer producer CF Industries and steelmaker Nucor, both in Louisiana, and industrial gas producer Linde in Beaumont, Texas. The country’s largest oil company is targeting a start-up date for a carbon capture and storage system at CF Industries in the first half of 2025.
Dan Ammann, president of low carbon solutions at Exxon, said those three contracts combined promise to remove 5 million tons of emissions annually — the equivalent of converting 2 million gas-powered cars to electric vehicles.
Exxon completed its acquisition of the carbon-dioxide pipeline operator Denbury for $5 billion in late 2023. The deal gave Exxon more than 900 miles of pipeline stretching through Mississippi, Louisiana and Texas that are located near at least 10 storage sites in the region.
“It gives us sort of instantaneous scale, instantaneous reach, across this huge source of emissions along the Gulf Coast,” Ammann said of the Denbury acquisition. “It gives us the ability to develop storage all along that pipeline as well.”
Exxon says it now owns the largest carbon dioxide pipeline network in the U.S. As the infrastructure comes together, Exxon is seeing “a very high level of interest from a lot of different emitters along the Gulf Coast,” Ammann said.
Chevron is the operator and lead investor in a flagship project called Bayou Bend, which has a 140,000 acre position of permanent carbon dioxide storage space near Port Arthur and Beaumont, Texas. The project is a joint venture with minority shareholders Talos Energy and Carbonvert.
Negotiations are currently underway with potential customers, Gustavson said, declining to disclose names. The area is home to large petrochemical, refinery, liquid natural gas and industrial gas operations with significant carbon dioxide footprints, he said.
“Bayou Bend could be one of the largest CO2 storage projects in the world. You’re talking several million tons a year of storage,” Gustavson said. The project has the potential for even more storage capacity depending on how much technical progress is made, the executive said.
While the IEA has described carbon capture and storage as “essential” to slash emissions in sectors like heavy industry, agency director Fatih Birol issued a sharply worded statement in November calling on the oil and gas industry to let go of the “illusion that implausibly large amounts of carbon capture are the solution” to climate change.
Birol’s comments came on the back of an IEA report that called on the industry to invest more in clean energy and accept the “uncomfortable truth” that a successful energy transition will result in the scaling back of fossil fuel production. That sparked a backlash from OPEC, which accused the IEA of vilifying the oil and gas industry.
“We’re not saying carbon capture can be implemented everywhere,” SLB’s Majkut said. “As a matter of fact, the primary way to decarbonize should be energy efficiency, scale up of renewables, and effectively carbon capture shall be used on applications that you can’t easily electrify, that you can’t easily decarbonize otherwise.”
Pipeline opposition
Increasing carbon capture and storage to meet net-zero emissions goals in the U.S. will require a massive expansion of pipeline infrastructure. The Department of Energy estimates that the network of carbon dioxide pipelines needs to grow from about 5,200 miles currently to between 30,000 and 90,000 miles.
“The key is the right geology close by to concentrated emissions,” Gustavson said. “That’s where we see this scaling fastest first, but over time, we will need to build more CO2 infrastructure to be able to transport CO2 much longer distances to access the same storage.”
But the permitting process is challenging because pipelines often cross state lines, requiring lengthy approval from multiple jurisdictions and creating bottlenecks, Majkut said.
Pipeline expansion has faced opposition in communities where residents are worried about the safety of transporting carbon dioxide. In 2020, a pipeline owned by Denbury ruptured just outside the village of Satartia, Mississippi, leading to the release of more than 31,000 barrels of carbon dioxide. More than 40 people were hospitalized and 200 individuals were evacuated from the area. Denbury was fined nearly $2.9 million by the U.S. Transportation Department.
Denbury said in a 2022 report that it had upgraded equipment and procedures in the wake of the pipeline leak to “substantially reduce the risk of similar events in the future, as well as mitigate and diminish the consequences in the event they do occur.”
The Energy Department says carbon dioxide pipelines have a better safety record than natural gas pipelines and other large infrastructure such as electric transmission. There have been no deaths from carbon dioxide pipelines over the past two decades and one injury in addition to the hospitalizations from the Satartia incident, according to the Transportation Department.
There are still a lot of uncertainties surrounding carbon capture and storage, said Miklos, the executive at International Paper. But the Vicksburg project is an opportunity to carefully examine the technical and economic viability and the impact on climate over a multiyear period, he said.
“The primary questions are around the ability to do this in a way that is cost effective,” he said.
You may like
Environment
Review: The tech-forward Meepo Go electric skateboard is a smooth, speedy ride for all [Video]
Published
4 hours agoon
July 19, 2025By
admin![Review: The tech-forward Meepo Go electric skateboard is a smooth, speedy ride for all [Video]](https://i0.wp.com/electrek.co/wp-content/uploads/sites/3/2025/07/Meepo-skateboard-hero.jpg?resize=1200,628&quality=82&strip=all&ssl=1)

Scooter here, back with another electric mobility review. This time, I tested out the Meepo Go electric skateboard. It is a sturdy, smooth deck designed for riders of all sizes, with some unique tech I had never encountered before. Be sure to check out my full video review below.
The Meepo Go is a versatile skateboard built for everyone
The Go electric skateboard from Meepo comes in one standard design. It usually has an MSRP of $699, but it is currently on sale for $569, so now is an excellent time to buy.
Features at a glance:
- Bamboo and fiberglass deck provides durability, flexibility, and stability, suitable for heavier riders over 200 lbs.
- Impact-resistant plates and a scratch-resistant underside.
- Dual belt drive 1500 watt stator 4230 motors
- 12s2p 345.6WH/8AH battery with flame-retardant and water-resistant protection
- JK-FOC24B Electronic Speed Controller (ESC)
- Offers smooth, jerk-free acceleration with customizable speed and braking settings
- Four-speed modes:
- L: 12 mph (20 km/h)
- E: 20 mph (32 km/h)
- S/S+: 28 mph (45 km/h) (S+ adds faster acceleration)
- Adjustable braking intensity
- Top Speed 28 mph (45 km/h)
- Range: Up to 20 miles (32 km)
- Incline capabilities: 30%
- 2-year warranty

Electrek‘s take
Meepo is an exciting electric skateboard manufacturer whose goal is to make this particular form of travel accessible to anyone and help reduce carbon emissions. You know we love that.
The company has built hundreds of thousands of electric boards, all of which are rigorously tested and constantly revamped for better quality and efficiency. For my first-ever encounter with Meepo, I was sent its Go electric skateboard – a sort of all-in-one deck designed to support heavier riders.
Advertisement – scroll for more content
I didn’t realize this was a heavy rider board until I read its description on the website. I don’t think that was the reason Meepo recommended this one, but it’s nice to know I wouldn’t have to worry about breaking the Go for being too heavy (I’m only 200 pounds right now, okay?).
The unboxing was incredibly simple. You first unwrap your shiny new, assembled Meepo Go deck, complete with wheels, trucks, motors, and battery. Below that is some instructions, a charger with cables, a couple of adjustment tools, plus two extra motor belts.
Last but not least is Meepo’s J6S ergonomic remote. According to Meepo, the remote’s upgraded control logic allows riders to double-click to change speed modes, reducing accidental toggles, and can stay connected to the board at a max range of 46 meters.
My full haul is pictured above and in the video below. Zero assembly is required; simply plug and play. The Meepo Go electric skateboard can recharge when fully drained in four hours.
Aside from its sturdy design, thanks to a Bamboo and fiberglass deck, I found the Meepo Go quite aesthetically pleasing. I liked its unique grip tape design and carved-out handle for easier carrying (see below).

Once the Meepo skateboard was fully charged, it was time to power up and take it out for a first spin. My initial impression was just how smooth a ride the Go is, thanks in part to its wheels, which Meepo recently revamped to enable better wet-weather traction and anti-slip capabilities.
The trucks initially took some getting used to as they are 45-degree as opposed to 50-degree on traditional configurations, but once I got used to the difference, I felt much more stable at high speeds and making sharp turns. Meepo also provided a truck tool to tighten or loosen your configuration to your preferences.
The Meepo Go’s dual 4230 brushless motors combine for a total output of 3,000 watts, offering a top speed of up to 28 mph or 45 km/h. While that’s pretty damn fast for an electric skateboard, Meepo said “not so fast” to new riders for their own safety.
Go riders must travel 10 km (6.2 miles) in the lower two “L” and “E” speed modes to unlock the S and S+ modes, which allow the 28 mph top speed and higher acceleration. S mode was honestly too fast for my liking, but it was nice to know I had those speed capabilities whenever I’m feeling saucy. The truth is, at my age and skill level, I’m beyond satisfied cruising and carving around 20 mph.
Luckily, the Meepo Go electric skateboard delivers both speed options and then some.

The Meepo Go also allows you to customize its braking intensity from 0% to 100%. This is a feature I had never personally seen on an electric skateboard that genuinely impressed me. It just adds to the overall smoothness this deck provides on all levels.
As mentioned in the key features above, the Go’s dual motors are powered by an eight-amp-hour battery, which enables an all-electric range of up to 20 miles or 32 km.
Aside from speeds nearing 30 mph, you really feel the Meepo Go’s capability on hills. It was configured to tackle 15-degree (30%) inclines with ease, and having tested it, it’s true.
What may be most impressive about this particular Meepo skateboard is its advanced JKFOC-24B electronic skate controller (ESC), which is essentially the brain of the entire powertrain.
The ESC delivers smooth acceleration with no jerking or lag. It also enables full user customization of acceleration, top speed, and braking sensitivity, so once you get comfortable, you can tailor every aspect of your riding experience to your liking. This is another super cool feature that was new to me personally.

Overall, the Meepo Go is smooth, powerful, and very tech-forward. With more than enough speed, I truly enjoyed the lag-free cruising and carving of the 45-degree trucks and the ease of use of its ergonomic remote.
I was genuinely impressed by the tech used to customize this skateboard, enabling anyone to customize their ride. As such, I’d highly recommend the Meepo Go because of its feel, utility, and universal rideability for virtually everyone, not to mention its competitive pricing.
If you’d like to try out the Meepo Go electric skateboard for yourself, click here. Be sure to check out my full video review below.
Buy a Meepo Go Electric Skateboard
FTC: We use income earning auto affiliate links. More.
Environment
2025 Can-Am Origin test ride: a rugged, high-tech return to two-wheel fun
Published
8 hours agoon
July 19, 2025By
admin

The 2025 Can-Am Origin electric motorcycle is the pinnacle of fun, just as long as your good time can fit into 69 miles of riding between charges. What it lacks in long-distance range, it makes up for in versatility, rugged style, and instant torque that’s ready for the road and trail. Each twist of the throttle delivers immediate electric propulsion. Its futuristic design and stealthy motor hum make the Origin a dual-sport machine pulled from tomorrow that wonderfully celebrates Can-Am’s two-wheeled heritage of decades past. I also spent some time on the road with the more approachable Can-Am Pulse, a standard street bike with a slight range advantage.
Can-Am style and comfort through technology
The Can-Am Origin is unlike any electric motorbike that has entered my garage. Its tall stance, 21-inch front and 18-inch rear wheels, and high ground clearance practically beg to be taken off your routine street routes. Can-Am simultaneously delivers an infotainment system on a dual-sport bike that, respectfully, makes much more expensive electric motorcycles look like tech dinosaurs in comparison.
The Origin’s dashboard has specs that every electric motorcycle company should copy. Equipping this system to an electric dual-sport feels like a total luxury. The Origin features a giant 10.25-inch color touchscreen with BRP Connect and a clean user interface that automatically switches between light and dark mode and adjusts brightness. In addition to a digital speedometer, you can quickly switch between ride modes, view battery status, check estimated range, and more.

Ride modes include Normal, Sport, Rain, Eco, two different Off-Road modes. You can toggle traction control and fine-tune front and rear regenerative braking independently, each with Off, Mid, and Max settings. Controls are accessible via the touchscreen when parked or through handlebar-mounted thumb controls while riding.
Advertisement – scroll for more content
The UI adapts to show either large gauges or a split between speedometer and infotainment applets. Bluetooth connects the bike and your phone, and Can-Am has included built-in wifi for over-the-air software updates. These are the kinds of features you’d expect on a premium electric motorcycle in 2025, but they’re not guaranteed.
For iPhone users, there’s Apple CarPlay integration. Two caveats: first, the system uses USB-A instead of USB-C, so newer iPhones will require an adapter or a USB-A to USB-C cable that supports data, not just charging. Second, it only supports wired CarPlay, not wireless, despite the bike having both wifi and Bluetooth radios onboard.

Those two complaints aside, the CarPlay integration is next-level. The touchscreen is responsive when parked, and everything remains fully controllable through the handlebar controls while riding. Access to apps like Maps, Music, Messages, and Phone while on the move is a real convenience. There are also motorcycle- and EV-specific apps with CarPlay are right at home on the Can-Am system.
There are no built-in speakers, so Can-Am relies on Bluetooth audio outputs. The setup is clever, supporting two output channels: one for the rider and one for the passenger helmet comms systems. I experimented by tossing a Bluetooth speaker onto the handlebars and was surprised to find it worked well in sub 50 mph environments as an open-air audio solution.
My only real hardware gripe on a bike that otherwise outshines much of its competition is the lack of self-canceling turn signals. Not every bike has them, but every bike that lacks them is missing out. There’s nothing less cool than riding around with your blinker still flashing. Fortunately, the dash clearly displays active signals. Still, I initially thought the right indicator light on the dash wasn’t working until I realized a single cable runs directly in front of it from my seated position. It’s a small, oddly specific problem that may be specific to my loaner bike, but I can’t quite position the cable differently.

Overall, I give the look and tech a 9.75 out of 10 for delivering both style and features that I actually want and use.
How the Origin feels to ride
At 5’10” with a 30-inch inseam, I find the Origin’s seat height tall yet correct for a dual-sport bike. Throwing a leg over feels a bit like saddling up on a horse, and once I’m on, it’s immediately comfortable. I can straddle the bike confidently, with my left foot planted on the ground and the other hovering around the rear brake. Any taller, and it might feel like a stretch; any shorter, and the ride position wouldn’t feel as commanding. The elevated stance provides a clear, confident view of the road or trail ahead, and the headlight system works adequately. It sets the Origin apart from the lower, more compact feel of traditional street bikes.
With this bike, Can-Am delivers an awesome mix of rugged reality and futuristic aesthetic. The Origin’s angular black-and-white bodywork and tall riding position regularly invokes the feeling of a stormtrooper hovering through the moon forest of Endor on a speeder bike. That particular vibe is especially strong at speed, where the elevated stance and electric torque make it feel like you’re gliding just above the terrain. At lower speeds, the illusion shifts. The stealthy motor hum fades behind the subtle roll of tires on pavement, creating a sensation much like quietly cruising up on a skateboard. It’s stealthy, smooth, and serene.

In terms of performance, the Origin tops out at 79 mph for me, providing plenty of speed for highway rides. Can-Am rates the 0-60 mph acceleration at 4.3 seconds, but frankly this bike feels like it might toss you overboard if you push it that quickly. Can-Am estimates range of up to 90 city miles and 71 mixed environment miles. On one test ride, I ran the battery from 100 percent to 1 percent over the course of 2.3 hours, covering 58.7 miles at an average speed of 24 mph, according to the bike stats.
According to my stats, it was many more hours of fun in the sun with a break for lunch at the park by the water in between riding sessions. That ride was done entirely in Sport mode with regenerative braking turned off, and it returned an average energy consumption of 9 miles per kilowatt-hour. It’s a solid showing for an electric dual-sport, especially considering the aggressive mode and lack of regen for the most reactive and relaxed ride.
Sometimes I love the feel of regenerative braking on electric cars and motorcycles. It can add to the feeling of responsiveness. I found regen on this bike to feel a bit more tight and underpowered for my liking, but it’s there as an option for extending range. With regen turned off entirely, the Origin felt significantly more loose and natural to ride. On the Origin I consistently opted to leave both front and rear regen off. We’ll see how the Pulse feels when I test that model next.
I must have logged over 500 miles across four weeks with the Origin. The lasting impression is that when you gain muscle memory for how the bike responds to throttle spin and body movement, riding the Can-Am Origin feels like playing an amplified electric guitar. Every incremental finger and palm positioning has a result, and when you find your rhythm, suddenly you’re creating music.

The other piece of the Can-Am Origin experience that I didn’t anticipate is the conversational aspect. Electric vehicles are still novel to many, and electric motorcycles are an absolute enigma to most. “Can it get wet?” is still the classic question that many ask. But from day one to day 28 of test riding the Can-Am Origin, it was the brand itself that got people asking me about the bike.
My takeaway is that people have a real affinity for the Can-Am brand as well as a nostalgia for the days of two-wheeled Can-Am motorbikes. When they learn that Can-Am is back on two wheels in the form of a bad-ass looking electric dual-sport motorcycle, people react like they just met a the much younger version of a celebrity in their home town. It’s a fun thing to experience.
Can-Am has earned its place as an electric motorcycle brand to consider
The Can-Am Origin is an incredibly thoughtful and fun take on what an electric dual-sport can be. It pairs rugged styling with a high-tech, feature-rich interface, offers plenty of real-world performance, and never stops turning heads while doing it without trying. From its futuristic design and surprisingly refined touchscreen to the tall, confident riding position and intuitive handling, the Origin is a complete package, so long as your expectations around electric motorcycle range are in check.
Priced starting at $14,999, the Origin slots in competitively against other premium electric motorcycles, though it leans more toward adventure and off-road versatility than urban street performance. It doesn’t quite reach the power or fast-charging capability of more premium priced machines, yet it undercuts in price and adds very useful touches like Apple CarPlay, OTA updates, and dual regen tuning.

If money were no object, I’d gladly keep one in the garage. It’s just flat-out fun to ride. From quick errands and joyrides to weekend backroad escapes, the Origin is a thrill machine that leaves you smiling between rides. Can-Am has a huge selection of first-party accessories to customize your bike as well. This configuration above makes me drool.
Range will be the limiter on machines like this for a while, and while around 70 miles between charges is enough for plenty of use cases, it still has to be a part of the conversation when talking recommendations. But here’s the thing: despite that limitation, electric motorcycles are a ton of fun right now. And if you’ve got either a high pain tolerance for early adoption or healthy access to good charging infrastructure, you can absolutely push them further.

The Origin is compatible with both Level 1 (standard wall outlet) and Level 2 (240V) charging, but not Level 3 DC fast charging. Can-Am rates Level 2 charging at 0 to 80% in 1.5 hours and 0 to 100% in 3.5 hours. In practice, that translates to plugging in and waiting a few hours between fun sessions. For some riders, that’s no big deal, especially if spending time at your destination is part of the trip.
I certainly don’t live along the great electric freeway of California, but my coastal stretch of highway in South Mississippi is populated with electric charging stops.
In my testing, I used the Can-Am Origin for a roundtrip airport commute from home in Ocean Springs, MS to Gulfport, MS, and back. The airport was outside of the travel-there-and-back-without-charging range, but free charging infrastructure at the airport parking garage made it no problem. I rode there, parked, charged during my trip, and returned from the other side of the country to a full battery. So yes, it’s capable of handling local duties. But if long range is central to your riding lifestyle, it’s something to plan around. I think lower speeds and paid charging solutions along the way would allow me to reach New Orleans and return home, but I haven’t set out on that path with this bike.


The Origin isn’t perfect, but it’s arguably best in its category, well-executed, and just damn cool to experience. Can-Am absolutely executed on creating a great electric motorcycle experience despite not being solely focused on EVs or two-wheeled machines.
Can-Am Pulse experience
After 600+ miles on the Can-Am Origin, I had the chance to put some miles on a 2025 Can-Am Pulse electric motorcycle. My key takeaways? Both are excellent electric motorcycles with equally great CarPlay integration. The Pulse is more approachable with a low riding position and slightly more range. The larger storage capacity is also appreciated compared to the somewhat tight space on the Origin.

If I were choosing which to purchase without extensive riding experience, the Can-Am Pulse is absolutely the bike I would gravitate toward. It’s just a great standard street bike with awesome technology at a competitive price.

Above is a look at the redesigned CarPlay experience coming in September 2025 to iPhone in iOS 26, as seen on the Can-Am Pulse display. The new design flexibility makes CarPlay look more at home next to Can-Am’s UI that always appears on a third of the display. Since Can-Am supports CarPlay, the infotainment system will receive free upgrades as Apple enhances the iPhone-powered feature.
Can-Am also supports free over-the-air software updates to the bike itself. Updates are downloaded over wifi and installed using the built-in system on the bike. No visits to the dealership or firmware updates over USB drives required.
Here’s how both bikes compare on paper:
Feature | Can‑Am Origin | Can‑Am Pulse |
---|---|---|
Starting MSRP | $14,499 | $13,999 |
0–60 mph | 4.3 sec | 3.8 sec |
City range | 90 miles | 100 miles |
Combined range (WMTC) | 71 miles | 80 miles |
Charging (20→80 %) | 50 min (Level 2) | 50 min (Level 2) |
Peak power | 47 hp (35 kW) | 47 hp (35 kW) |
Continuous power | 27 hp (20 kW) | 27 hp (20 kW) |
Torque | 53 lb‑ft (72 Nm) | 53 lb‑ft (72 Nm) |
Dry weight | 412 lb (187 kg) | 390 lb (177 kg) |
Seat height | 34 in (865 mm) | 30.86 in (784 mm) |
Suspension travel | Front/rear 10 in (255 mm) | Front/rear 5.5 in (140 mm) |
Drive modes | 6 modes (Normal, ECO, Rain, Sport, Off‑Road, Off‑Road+) | 4 modes (Normal, ECO, Rain, Sport+) |
Find more about Can-Am Origin and Pulse electric motorcycles here.
Electrek’s Take
I still think the Can-Am Pulse is the easier recommendation for most people, and you can kit it out as much as the Origin. Yet after around a month with each bike, I can’t help but think more about the Pulse. Can-Am really built a fun machine with that bike, especially with its commanding riding position and rugged style.
I would love to see a version with Level 3 charging speeds and greater range to expand the road trip potential, but both machines are super if your commute or leisure route works with the specs.

For now, Can-Am has delivered more than any other electric motorcycle maker when it comes to a giant display with CarPlay integration, attention-grabbing style, and options for two different riding preferences.
Want to learn more about the world of electric motorcycles and other two-wheeled EVs? Catch up on expert Micah Toll’s constant coverage, and subscribe to Electrek’s Wheel-E podcast for weekly updates.
FTC: We use income earning auto affiliate links. More.
Environment
This $2,400 eight-wheeled dump truck from China is the toy every man needs
Published
8 hours agoon
July 19, 2025By
admin

There’s something about the joy of playing around with Tonka trucks in a sandbox that men really never grow out of. Sure, we grow up, get real jobs, and most of us never take the toys back out of the dusty, long-forgotten box. But the desire is still there. And if you gave just about any former boy and reluctant adult the option, I’d be dollars to donuts they’d gladly play around with the life-sized version of their childhood construction toys in a heartbeat.
If that sounds like fun, then I’ve got good news for you. I just found the coolest grown-up toy construction vehicle and it’s unlike anything you’ve seen before. I’d argue that it slots in nicely as a perfect example of some of the coolest and weirdest things you can find from China’s endless supply of innovative EVs. So, for your viewing pleasure, I submit this week’s Awesomely Weird Alibaba Electric Vehicle of the Week: the Octo-dumper!
I really don’t know how to describe this vehicle. I’ve been at a loss for words before in this column, but at least there’s usually a general class of vehicle that these things fit into.
In this case, I’m hesitant to call it a dump truck – partly because it appears to be all dump and no truck.
Advertisement – scroll for more content
It’s remote-controlled, so you could call it an RC vehicle, but the fact that I’ve seen cars smaller than this rig makes me hesitant to lump it in with the remote-controlled toys.
Then there’s the 8×8 setup here. The last time I saw an eight-wheeled vehicle like this was, ironically, it was a mobile crane that was unloading one of my containers full of fun Alibaba construction equipment. Wow, I didn’t expect to come full circle there so quickly.

But despite being unable to quite classify this dumper, I still love everything about it, and I kind of want one.
Measuring around six feet long (197 cm), it seems capable of carrying a fairly large load. They rate it for 2,200 lb (1,000 kg) of cargo, and it looks every bit ready for it.
The top speed of 9 mph (15 km/h) might not hold up when fully laden, but this isn’t exactly a vehicle built for speed. Or comfort, for that matter. It’s built for by-god gettin’ stuff done! And with a claimed 5.4 kWh of battery capacity, it’s going to be quietly hauling your junk around for a good long time before it needs a recharge.

The cargo bed appears to have the classic pickup truck tailgate in the rear, though it also adds a pair of side gates like an old Corvair 95 Rampside pickup, except that the side gates run the full length. Finally, the front also has a tailgate–err, frontgate? Basically, it’s gates all around to turn this thing into a rolling flatbed capable of carrying just about any oversized junk you can think of!
Just don’t start tipping it up while you’ve got all those gates down or you might lose your load. That’s right, don’t forget that this is also a dumper! Not just a transporter around a job site, you can unload your dirt, mulch, gravel, friends, or whatever you carry in here with the push of a button.
Now I’m not exactly sure what I’d do with one of these if I owned one, but I’m sure I could find plenty of uses. You never realize what you can do with an octo-dumper until you own one, and then it’s suddenly like, “How did I ever manage without this thing!?”
Now it will set you back more than a Tonka truck. But I’d argue that the sticker price of $2,482 is a small price to pay in order to have the coolest vehicle in the neighborhood! Just try not to think yet about the thousands and thousands of dollars in fees, import charges, shipping, and other expenses of actually receiving one of these in the West. Instead, think of the fun hayrides you could give the neighborhood kids, at least assuming their parents signed the extensive liability waiver that this thing would probably require.
Speaking of liability though, before any of you get the bright idea to try one of these, please be warned that I’m telling you that’s a bad idea. As I always try to remind my readers during these fun tongue-in-cheek Alibaba articles: don’t actually try to buy one of these things. Seriously. These wild-looking Chinese EVs may be fun to look at, but this is just a lighthearted weekend column where I dig through Alibaba’s bizarre and fascinating collection of electric vehicles. While I’ve had a few successful (and fun) purchases from the site, I’ve also been burned more than once – so it’s definitely not for the faint of heart or anyone on a tight budget.
That’s not to say some brave (or stubborn) readers haven’t taken the plunge anyway, ignoring my caution and venturing into the unknown. But please don’t be the one who gambles and ends up with empty hands and a lighter wallet. Consider this your official heads-up – I’ve warned you!
For now, let’s enjoy how awesome it is that something like this octo-dumper exists, and leave it at that. Until next time, and until the next weird Alibaba EV, this is Micah signing off.

FTC: We use income earning auto affiliate links. More.
Trending
-
Sports3 years ago
‘Storybook stuff’: Inside the night Bryce Harper sent the Phillies to the World Series
-
Sports1 year ago
Story injured on diving stop, exits Red Sox game
-
Sports2 years ago
Game 1 of WS least-watched in recorded history
-
Sports2 years ago
MLB Rank 2023: Ranking baseball’s top 100 players
-
Sports4 years ago
Team Europe easily wins 4th straight Laver Cup
-
Sports2 years ago
Button battles heat exhaustion in NASCAR debut
-
Environment2 years ago
Japan and South Korea have a lot at stake in a free and open South China Sea
-
Environment2 years ago
Game-changing Lectric XPedition launched as affordable electric cargo bike