Connect with us

Published

on

Apr 12 2024 Kyoto University

Mother Nature is an artist, but her craft of creating animal faces requires more than a paintbrush and palette. Such highly complex shapes originate from their respective transient neural crest cells. 

These embryonic pluripotent cells within the facial primordium-;the early development form-;may be necessary for forming proper facial structures. However, analyzing the molecular mechanisms in such early stages of development poses many technical challenges.

Now, a group of Kyoto University researchers have produced neural crest cell-rich aggregates from human pluripotent stem cells and developed a method to differentiate them in cell populations with a branchial arch-like gene expression pattern.  After the cell populations differentiate into precursors of maxillary and mandibular cells in response to external signaling factors, these populations spontaneously form patterns of the facial primordium."

Yusuke Seto of KyotoU's Institute for Medical and Biological Research

This cartilage-like structure, reminiscent of Meckel's cartilage, is formed locally within the aggregates.

"We aim to establish a model for studying early facial development by using the properties of human pluripotent stem cells to generate in vitro tissue resembling the bronchial arch of the primordial face," adds Ryoma Ogihara, also of the Institute. Related StoriesSpace travel alters human vascular cell function, study findsResearch explores the health benefits of resistant starch in plant-based dietsFeeling lonely? It may affect how your brain reacts to food, new research suggests

Researchers are examining the various developmental processes that cause interspecific and individual differences in facial structure to explain conditions such as craniofacial disorders.

"Using our in vitro model could help us better understand and control signal integration during the fate determination of the branchial arch and cartilage formation in the face and elsewhere. We hope our technology can contribute to the development of cellular materials for new regenerative medicine," adds Mototsugu Eiraku, also of the Institute. Source:

Kyoto UniversityJournal reference:

Seto, Y., et al. (2024). In vitro induction of patterned branchial arch-like aggregate from human pluripotent stem cells. Nature Communications. doi.org/10.1038/s41467-024-45285-0.

Continue Reading

Science

NASA’s Hubble and Webb Discover Bursting Star Formation in Small Magellanic Cloud

Published

on

By

NASA’s Hubble and Webb Discover Bursting Star Formation in Small Magellanic Cloud

Scientists from NASA observed the bursting expansion of gas, stars, and dust from the glittering territory of the dual star clusters using Hubble and Webb space telescopes. NGC 460 and NGC 456 stay in the Small Magellanic Cloud, which are open clusters, with dwarf galaxies and orbit the Milky Way. These clusters are part of the extensive star complex clusters and nebulae that are most likely to be linked to each other. Stars are born upon the collapse of clouds.

Hubble and Webb Reveal Explosive Star Births in Small Magellanic Cloud

As per a report from NASA, the open clusters are from anywhere from a few dozen to many young stars, which are loosely bound by gravity. The images captured by Hubble capture the glowing and ionised gas, which comes from stellar radiation and blows bubbles in the form of gas and dust, which is blue in colour. The infrared of Webb shows the clumps and delicate filament-like structures and dust, which is red in colour.

NGC 460 and NGC 456: A Window into Early Universe Star Formation

Hubble shows the images of dust in the form of a silhouette against the blocking light; however, in the images of Webb, the dust is warmed by starlight and glows with infrared waves. The blend of gas and dust between the stars of the universe is called the interstellar medium. The region holding these clusters is known as the N83-84-85 complex and is home to multiple, rare O-type stars. These are hot and extremely massive stars that burn hydrogen like the Sun.

Such a state mimics the condition in the early universe; therefore, the Small Magellanic Cloud gives a nearby lab to find out the theories regarding star formation and the interstellar medium of the cosmos’s early stage.

With these observations, the researchers tend to study the gas flow from convergence to divergence, which helps in refining the difference between the Small Magellanic Cloud and its dwarf galaxy, and the Large Magellanic Cloud. Further, it helps in knowing the interstellar medium and gravitational interactions between the galaxies.

Continue Reading

Politics

Binance’s CZ threatens to sue Bloomberg over Trump stablecoin report

Published

on

By

Binance’s CZ threatens to sue Bloomberg over Trump stablecoin report

Binance’s CZ threatens to sue Bloomberg over Trump stablecoin report

Binance co-founder CZ has dismissed a Bloomberg report linking him to the Trump-backed USD1 stablecoin, threatening legal action over alleged defamation.

Continue Reading

Science

New Interstellar Object 3I/ATLAS Could Reveal Secrets of Distant Worlds

Published

on

By

New Interstellar Object 3I/ATLAS Could Reveal Secrets of Distant Worlds

The entry of a third known object into our solar system has been confirmed on July 1, 2025 by the astronomers. This object is named 3I/ATLAS, where 3I stands for “Third Interstellar”, having a highly hyperbolic (eccentricity ≈ 6.2) orbit, confirming it is not bound to the Sun but is a true interstellar visitor. Only two such visitors, 1I/ʻOumuamua (2017) and 2I/Borisov (2019), had been seen before. Notably, 3I/ATLAS appears to be the largest and brightest interstellar wanderer yet discovered.

Comparison with previous interstellars

According to NASA, astronomers from the ATLAS survey first spotted the object on July 1, 2025, using a telescope in Chile. It immediately drew attention for its unusual motion. Shortly after discovery, observers saw a faint coma and tail, leading to its classification as comet C/2025 N1 (ATLAS).

This comet-like appearance is shared with 2I/Borisov, the second interstellar visitor. Global observatories now track 3I/ATLAS. It poses no threat but offers a rare opportunity to study alien material. Since 1I/ʻOumuamua was observed only as it was leaving the solar system, it was difficult for astronomers to get enough data on it to confirm its exact nature — hence the crazy theories about it being an alien spaceship — though it’s almost certainly an asteroid or a comet.

Size and Significance

3I/ATLAS is much larger and brighter than earlier interstellar visitors. It is about 15 kilometers (km) [9 miles] in diameter, with huge uncertainty, compared to 100m for 1I/’Oumuamua and less than 1km for 2I/Borisov. This brightness and size makes it a a better target for study. Astronomers are planning to analyze its light for chemical signatures from its home system to get clues about the formation of distant planetary systems.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


WhatsApp Rolls Out AI-Powered Chat Wallpaper Feature; Threaded Message Replies Spotted in Development



Apple Maps in iOS 26 Beta Version Come With An Upgraded Search Feature: Report

Continue Reading

Trending