Booming investment in solar and battery manufacturing is rapidly becoming a powerful global economic driver, according to a new report from the International Energy Agency (IEA).
In a first-of-its-kind analysis from the IEA, “Advancing Clean Technology Manufacturing” finds that global investment in the manufacturing of five key clean energy technologies – solar, wind, batteries, electrolyzers, and heat pumps – rose to $200 billion in 2023, an increase of more than 70% from 2022 that accounted for around 4% of global GDP growth and nearly 10% of global investment growth.
Spending on solar PV manufacturing more than doubled last year, while investment in battery manufacturing rose by around 60%.
As a result, solar PV module manufacturing capacity today is already in line with what is needed in 2030 based on the IEA’s net zero emissions scenario. For battery cells, if announced projects are included, manufacturing capacity is 90% of the way toward meeting net zero demand at the end of this decade.
The report finds that many projects in the pipeline will be operational soon. Around 40% of investments in clean energy manufacturing in 2023 were in facilities that are due to come online in 2024. For batteries, this share rises to 70%.
Clean energy manufacturing is still dominated by China, which is currently home to more than 80% of global solar PV module manufacturing capacity, followed by the US and India with 5%, and Europe with just 1%. That’s not expected to change this decade.
However, the report finds that the manufacturing of battery cells could become less geographically concentrated in China by 2030. If all announced projects are realized, Europe and the US could each reach around 15% of global installed capacity by 2030.
New data and analysis based on plant-level assessments of more than 750 factories indicate that China remains the lowest-cost producer of all clean energy technologies. Battery, wind, and solar PV manufacturing facilities are typically 70-130% more expensive to build in the US and Europe than in China.
However, the vast majority of total production costs for these technologies (70-98%) is estimated to come from operational costs that include energy, labor, and materials. The IEA says the implication is that current production cost gaps can be influenced by policy.
“While greater investment is still needed for some technologies – and clean energy manufacturing could be spread more widely around the globe – the direction of travel is clear. Policy makers have a huge opportunity to design industrial strategies with clean energy transitions at their core,” said IEA executive director Fatih Birol.
The report, produced in response to a request from G7 Leaders in 2023, is designed to provide guidance for policy makers as they prepare industrial strategies with a strong focus on clean energy manufacturing.
To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check outEnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get startedhere. – ad*
FTC: We use income earning auto affiliate links.More.
After a month off trying to wrap our heads around all the chaos surrounding EVs, solar, and everything else in Washington, we’re back with the biggest EV news stories of the day from Tesla, Ford, Volvo, and everyone else on today’s hiatus-busting episode of Quick Charge!
It just gets worse and worse for the Tesla true believers – especially those willing to put their money where Elon’s mouth is! One believer is set to lose nearly $50,000 betting on Tesla’s ability to deliver a Robotaxi service by the end of June (didn’t happen), and the controversial CEO’s most recent spat with President Trump had TSLA down nearly 5% in pre-morning trading.
New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.
Advertisement – scroll for more content
Got news? Let us know! Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
Hyundai is getting ready to shake things up. A new electric crossover SUV, likely the Hyundai IONIQ 2, is set to debut in the coming months. It will sit below the Kona Electric as Hyundai expands its entry-level EV lineup.
Is Hyundai launching the IONIQ 2 in 2026?
After launching the Inster late last year, Hyundai is already preparing to introduce a new entry-level EV in Europe.
Xavier Martinet, President and CEO of Hyundai Europe, confirmed that the new EV will be revealed “in the next few months.” It will be built in Europe and scheduled to go on sale in mid-2026.
Hyundai’s new electric crossover is expected to be a twin to the Kia EV2, which will likely arrive just ahead of it next year.
Advertisement – scroll for more content
It will be underpinned by the same E-GMP platform, which powers all IONIQ and Kia EV models (EV3, EV4, EV5, EV6, and EV9).
Like the Kia EV3, it will likely be available with either a 58.3 kWh or 81.4 kWh battery pack option. The former provides a WLTP range of 267 miles while the latter is rated with up to 372 miles. All trims are powered by a single electric motor at the front, producing 201 hp and 209 lb-ft of torque.
Kia EV2 Concept (Source: Kia)
Although it may share the same underpinnings as the EV2, Hyundai’s new entry-level EV will feature an advanced new software and infotainment system.
According to Autocar, the interior will represent a “step change” in terms of usability and features. The new system enables new functions, such as ambient lighting and sounds that adjust depending on the drive mode.
Hyundai E&E tech platform powered by Pleos (Source: Hyundai)
It’s expected to showcase Hyundai’s powerful new Pleos software and infotainment system. As an end-to-end software platform, Pleos connects everything from the infotainment system (Pleos Connect) to the Vehicle Operating System (OS) and the cloud.
Pleos is set to power Hyundai’s upcoming software-defined vehicles (SDVs) with new features like autonomous driving and real-time data analysis.
Hyundai’s next-gen infotainment system powered by Pleos (Source: Hyundai)
As an Android-based system, Pleos Connect features a “smartphone-like UI” with new functions including multi-window viewing and an AI voice assistant.
The new electric crossover is expected to start at around €30,000 ($35,400), or slightly less than the Kia EV3, priced from €35,990 ($42,500). It will sit between the Inster and Kona Electric in Hyundai’s lineup.
Hyundai said that it would launch the first EV with its next-gen infotainment system in Q2 2026. Will it be the IONIQ 2? Hyundai is expected to unveil the new entry-level EV at IAA Mobility in September. Stay tuned for more info. We’ll keep you updated with the latest.
FTC: We use income earning auto affiliate links.More.
Tesla has unveiled its lithium-iron-phosphate (LFP) battery cell factory in Nevada and claims that it is nearly ready to start production.
Like several other automakers using LFP cells, Tesla relies heavily on Chinese manufacturers for its battery cell supply.
Tesla’s cheapest electric vehicles all utilize LFP cells, and its entire range of energy storage products, Megapacks and Powerwalls, also employ the more affordable LFP cell chemistry from Chinese manufacturers.
This reliance on Chinese manufacturers is less than ideal and particularly complicated for US automakers and battery pack manufacturers like Tesla, amid an ongoing trade war between the US and virtually the entire world, including China.
Advertisement – scroll for more content
As of last year, a 25% tariff already applied to battery cells from China, but this increased to more than 80% under Trump before he paused some tariffs on China. It remains unclear where they will end up by the time negotiations are complete and the trade war is resolved, but many expect it to be higher.
The automaker had secured older manufacturing equipment from one of its battery cell suppliers, CATL, and planned to deploy it in the US for small-scale production.
Tesla has now released new images of the factory in Nevada and claimed that it is “nearing completion”:
Here are a few images from inside the factory (via Tesla):
Previous reporting stated that Tesla aims to produce about 10 GWh of LFP battery cells per year at the new factory.
The cells are expected to be used in Tesla’s Megapack, produced in the US. Tesla currently has a capacity to produce 40 GWh of Megapacks annually at its factory in California. The company is also working on a new Megapack factory in Texas.
It’s nice to see this in the US. LFP was a US/Canada invention, with Arumugam Manthiram and John B. Goodenough doing much of the early work, and researchers in Quebec making several contributions to help with commercialization.
But China saw the potential early and invested heavily in volume manufacturing of LFP cells and it now dominates the market.
Tesla is now producing most of its vehicles with LFP cells and all its stationary energy storage products.
It makes sense to invest in your own production. However, Tesla is unlikely to catch up to BYD and CATL, which dominate LFP cell production.
The move will help Tesla avoid tariffs on a small percentage of its Megapacks produced in the US. Ford’s effort is more ambitious.
It’s worth noting that both Ford’s and Tesla’s LFP plants were planned before Trump’s tariffs, which have had limited success in bringing manufacturing back to the US.
FTC: We use income earning auto affiliate links.More.