Connect with us

Published

on

I recently took a trip to China in order to see for myself how many of the e-bike drive systems and components we use daily in the West were originally designed and produced. And no journey to view the origins of the most popular e-bike components would be complete without a visit to Ananda, one of the largest and most advanced OEMs in the industry.

I was able to visit the company’s R&D headquarters in Shanghai as well as one of their factory locations in Wuxi, giving me a close look at the design process and how those designs get manufactured into real e-bike systems.

After starting operations in 2001, Ananda has focused purely on micromobility systems since 2011. They’ve long built many types of hub motors for e-bikes and scooters, but expanded into their own mid-drive electric bike motors in 2017. And the company’s scale has grown massively ever since.

You might not have heard of the company yet, largely because they rarely advertise which major e-bike brands use their motors, controllers, and other components. But to put things in perspective, they produced around 6.5 million electric motors last year. Most of their products are built for the massive domestic market, but around 600,000 were exported to Europe and North America, where they made their way onto e-bikes we know and love. Many of the biggest brands use their systems. There’s a good chance you’ve got an Ananda motor, controller, or other hardware in your garage right now and just don’t realize it.

The company is constantly growing and a new Vietnamese factory is currently in the works, but because the North American and European markets are booming for Ananda, the company is currently working on setting up a new European factory. Ananda also recently opened up its first North American service center in Los Angeles and is expanding its local US-based team.

Ananda is responsible for designing and producing just about every component used in an electric bicycle other than the batteries and BMS. However, they work with several battery manufacturers and provide testing to certify compatibility with their extensive drive system lineup.

Their core competency is in research and development, followed by production implementation. While some companies merely design components produced elsewhere and others operate factories to manufacture third-party designs, Ananda does it all in-house, focusing on a wide range of systems ranging from entry-level to premium components.

And while Ananda started as mainly a component maker, offering their own motors and controllers, they’ve since evolved into an entire system integrator. Now they supply many e-bike brands with an entire e-bike system, minus the battery.

That all-encompassing approach has necessitated a huge footprint, with the company touting over 1,000 employees and over 200 automated machines, 70 of which are just for automated coil winding.

Ananda is also one of the most mature mid-drive motor makers in the Chinese market, now developing several higher-power models for the North American market. And with an obvious understanding of what Americans want, they explained to me that all North American motors they develop are compatible with throttles. Talk about knowing your audience!

Touring Ananda’s R&D facility in Shanghai

My tour at Ananda started in the R&D center. There, the company has a team of engineers and designers working on every component of e-bike drive systems.

A major piece of that design and development process is ensuring that each component can withstand the rigors of daily use in the harsh environments that e-bikes and e-scooters experience everyday.

I walked through rows of machines operating every type of torture test you can imagine. I saw motors being heat-shocked with high and low temperatures. I saw tanks with motors undergoing humidity testing, alternating between humid and arid conditions. Rain machines were running to keep a constant spray of water on the components. Each machine looked like a progressively worse type of condition that I’d definitely avoid putting my own e-bike through.

There were robotic button pushers who simply pushed buttons on handlebar displays tens of thousands of times. Motors were shock-loaded to simulate sudden stops and hard braking during operation; Imagine a broomstick in the spokes situation that instantly grinds the motor to a halt.

Dozens of dynamometers were set up for long-term testing, performing months of testing on constantly running motors.

Entire e-bikes were installed in full-scale testing machines to simulate long-term testing of complete systems over tens of thousands of miles.

In other parts of the R&D center, banks of 3D printers whirred away, producing prototypes that may become entirely new drive systems. One such system currently in the works is an e-bike hub motor that includes a three-speed transmission inside the hub. It will essentially become the marriage of a hub motor and an internally geared hub, offering the best of both technologies.

Across the hall, old-school technology in the machine shop contrasts with the high-tech machines, offering no-less-critical machining capabilities for fabricating and modifying new designs.

Teams of bike mechanics install test systems on mule bikes while test riders put them through miles and miles of real-world riding verification.

I even got to have a go myself, donning a company helmet and testing out several of the new motors and drive systems that Ananda has produced. I tried an M100 mid-drive motor that felt like a perfect balance of power and comfort, as well as a more powerful 750W M6100 mid-drive motor that was a lot of fun but, frankly, probably more power than I truly needed most of the time. That model is destined for the US market and is likely to be popular among riders seeking powerful performance.

I even tested a moped-style hub motor system complete with cast wheels that I was sure included a torque sensor in the drive system due to how responsive the pedal assist was. Only afterward did I learn it was actually just a really nicely designed cadence sensor that they had managed to remove almost all the pedal lag from.

After testing the e-bikes, they showed me their new diagnostic tools, which include software designed to easily diagnose issues that could arise over a lifetime of use. Instead of having an unclear error, shops or companies can simply use the software to run checks on the bikes and find out exactly what could be causing a specific issue.

Ananda’s manufacturing facility in Wuxi

The second half of the day was spent at one of Ananda’s factories, where I saw their manufacturing firsthand.

The first step is the inspection and analysis of components from Ananda’s suppliers. Workers inspect these components down to the micron level, ensuring everything is manufactured to spec. Even a small deviation in a motor shell, for example, could result in extra motor noise and increased wear.

That level of precision inspection is what separates the truly high-quality manufacturers who understand the level of accuracy necessary for consistently performing and reliable products.

From there, we moved to the factory floor, where motors are manufactured. The first step is the winding of the motor cores, which involves spools of copper wire being intricately wound around the motor’s stators.

If you’ve ever seen the way electric motors were built in years past, and honestly still in some places, you’ve probably seen videos of women hunched over tables using their delicate fingers for hand-winding motors. But Ananda’s over 70 automated motor winding machines make that a thing of the past.

Now, motor cores are not only wound without human labor, but they’re also done so much more accurately and uniformly. The beauty of robots is that they never make mistakes or get tired and sloppy; they just wind up every single motor the exact same way each time.

Those wound motor cores are then inspected before heading on to the next step of assembly into motor casings. The assembly process is a combination of manual and automated tasks. High-precision jobs, such as placing the gears and building the internal transmissions, are done using robotic assembly machines.

These sub-assemblies are then passed onto the rest of the assembly line, where they are joined by hand with the motor cases. A laser engraver serializes each motor shell along the way, and then it heads to sound testing to ensure it powers up and operates as quietly as it should.

Some motors are assembled using automated machinery, ensuring precision placement of the motor gears and components.

Each finished motor is scanned into the database and then packaged up for shipment to an OEM that will build it into an e-bike, e-scooter, or e-moped. Years ago, e-bike motors were always shipped in foam packaging for protection. But Ananda has switched to much more environmentally responsible paperboard packaging, offering equal protection without using such harmful materials that are not able to biodegrade.

Interestingly, in another part of the factory, I saw many of the same torture testing machines that I had first seen in the R&D center back in Shanghai. As I quickly understood though, this was all part of the quality control process. The same way new designs get torture tested during development in Shanghai, the factory does the same extensive testing as part of spot inspections for each batch of components produced. The motors undergo similar loading and accelerated lifespan testing to ensure they are all performing as intended, and that there aren’t any deviations from one production batch to another.

The next stop was to see how controllers were made, and that involved getting suited up and heading into the company’s clean room facility. There, automated pick and place machines built up circuit boards that then passed through various soldering machines to produce the circuit boards. The process and outputs are all monitored using high-precision 3D optical imaging, allowing the workers to inspect each solder joint from many angles and ensure all the components are properly soldered to the board. Many of these components are too small to inspect with the naked eye, and so this type of imaging and analysis allows the company to ensure every tiny little leg and every minuscule drop of solder is not only correctly placed, but also properly soldered so it doesn’t shake loose 10,000 miles from now.

Next, conformal coating is applied to electronics, creating a waterproof barrier that prevents water vapor from corroding the metals and circuits.

Each of these steps is a small but critical part of the manufacturing process, ensuring that the components produced in Ananda’s factories perform their required functions not just at the start of a product’s life, but also for many years to come.

Rooftop solar array

The last stop of the tour was something I was surprised to see. Before I left the factory, I was led up to the roof where a large solar array gathered much of the energy used by the factory.

While it doesn’t cover 100% of the company’s energy usage, it does offset a large portion and helps to further promote the same message that the electric vehicles using Ananda’s components share: that how we generate and use energy has a major impact on our environment.

These types of steps go a long way to reducing our own harmful effects on the planet. Humans will always need to travel around their cities, and using two-wheeled electric vehicles is one of the most energy-efficient ways to do it. If companies can offset as much of the emissions generated from producing those vehicles, then all the better.

The takeaway

I’ve known of Ananda’s electric motors for years, and in fact built some of my first e-bikes with their motors over a decade ago. But I had no idea how large Ananda had grown and just how much of the entire e-bike system they now produce.

Far from just another e-bike motor manufacturer, Ananda is truly an entire system integrator. Producing everything from displays to controllers and every type of motor you can think of, Ananda has positioned itself as a leader in the micromobility space.

You don’t make 10 million motors a year and several million more controllers and other components without learning a thing or two about how important the quality and precision of those manufacturing processes truly are.

The company has obviously taken all of that learning to heart, developing a high-tech and highly automated design and manufacturing system that has grown into a massive operation.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla launches new software update with Grok, but it doesnt even interface with the car

Published

on

By

Tesla launches new software update with Grok, but it doesnt even interface with the car

Tesla has launched a new software update for its vehicles that includes the anticipated integration of Grok, but it doesnt even interface with the car yet.

Earlier this week, CEO Elon Musk said that Tesla would integrate Grok, the large language model developed by his private company, xAI, into its vehicles.

Today, Tesla started pushing the update to the fleet, but there’s a significant caveat.

The automaker wrote in the release notes (2025.26):

Advertisement – scroll for more content

Grok (Beta) (US, AMD)

Grok now available directly in your Tesla

Requires Premium Connectivity or a WiFi connection

Grok is currently in Beta & does not issue commands to your car – existing voice commands remain unchanged.

First off, it is only available in vehicles in the US equipped with the AMD infotainment computer, which means cars produced since mid-2021.

But more importantly, Tesla says that it doesn’t send commands to the car under the current version. Therefore, it is simply like having Grok on your phone, but on the onboard computer instead.

Tesla showed an example:

There are a few other features in the 2025.26 software update, but they are not major.

For Tesla vehicles equipped with ambient lighting strips inside the car, the light strip can now sync to music:

Accent lights now respond to music & you can also choose to match the lights to the album’s color for a more immersive effect

Toybox > Light Sync

Here’s the new setting:

The audio setting can now be saved under multiple presets to match listening preferences for different people or circumstances:

The software update also includes the capacity to zoom or adjust the playback speed of the Dashcam Viewer.

Cybertruck also gets the updated Dashcam Viewer app with a grid view for easier access and review of recordings:

Tesla also updated the charging info in its navigation system to be able to search which locations require valet service or pay-to-park access.

Upon arrival, drivers will receive a notification with access codes, parking restrictions, level or floor information, and restroom availability:

Finally, there’s a new onboarding guide directly on the center display to help people who are experiencing a Tesla vehicle for the first time.

Electrek’s Take

Tesla is really playing catch-up here. Right now, this update is essentially nothing. If you already have Grok, it’s no more different than having it on your phone or through the vehicle’s browser, since it has no capacity to interact with any function inside the vehicle.

Most other automakers are integrating LLMs inside vehicles with the capacity to interact with the vehicle. In China, this is becoming standard even in entry-level cars.

In the Xiaomi YU7, the vehicle’s AI can not only interact with the car, but it also sees what the car sees through its camera, and it can tell you about what it sees:

Tesla is clearly far behind on that front as many automakers are integrating with other LLMs like ChatGPT and in-house LLMs, like Xiaomi’s.

Continue Reading

Environment

Robinhood is up 160% this year, but several obstacles are ahead

Published

on

By

Robinhood is up 160% this year, but several obstacles are ahead

Florida AG opens probe into Robinhood. Here's the latest

Robinhood stock hit an all-time high Friday as the financial services platform continued to rip higher this year, along with bitcoin and other crypto stocks.

Robinhood, up more than 160% in 2025, hit an intraday high above $101 before pulling back and closing slightly lower.

The reversal came after a Bloomberg report that JPMorgan plans to start charging fintechs for access to customer bank data, a move that could raise costs across the industry.

For fintech firms that rely on thin margins to offer free or low-cost services to customers, even slight disruptions to their cost structure can have major ripple effects. PayPal and Affirm both ended the day nearly 6% lower following the report.

Despite its stellar year, the online broker is facing several headwinds, with a regulatory probe in Florida, pushback over new staking fees and growing friction with one of the world’s most high-profile artificial intelligence companies.

Florida Attorney General James Uthmeier opened a formal investigation into Robinhood Crypto on Thursday, alleging the platform misled users by claiming to offer the lowest-cost crypto trading.

“Robinhood has long claimed to be the best bargain, but we believe those representations were deceptive,” Uthmeier said in a statement.

The probe centers on Robinhood’s use of payment for order flow — a common practice where market makers pay to execute trades — which the AG said can result in worse pricing for customers.

Robinhood Crypto General Counsel Lucas Moskowitz told CNBC its disclosures are “best-in-class” and that it delivers the lowest average cost.

“We disclose pricing information to customers during the lifecycle of a trade that clearly outlines the spread or the fees associated with the transaction, and the revenue Robinhood receives,” added Moskowitz.

Robinhood CEO Vlad Tenev explains 'dual purpose' behind trading platform's new crypto offerings

Robinhood is also facing opposition to a new 25% cut of staking rewards for U.S. users, set to begin October 1. In Europe, the platform will take a smaller 15% cut.

Staking allows crypto holders to earn yield by locking up their tokens to help secure blockchain networks like ethereum, but platforms often take a percentage of those rewards as commission.

Robinhood’s 25% cut puts it in line with Coinbase, which charges between 25.25% and 35% depending on the token. The cut is notably higher than Gemini’s flat 15% fee.

It marks a shift for the company, which had previously steered clear of staking amid regulatory uncertainty.

Under President Joe Biden‘s administration, the Securities and Exchange Commission cracked down on U.S. platforms offering staking services, arguing they constituted unregistered securities.

With President Donald Trump in the White House, the agency has reversed course on several crypto enforcement actions, dropping cases against major players like Coinbase and Binance and signaling a more permissive stance.

Even as enforcement actions ease, Robinhood is under fresh scrutiny for its tokenized stock push, which is a growing part of its international strategy.

The company now offers blockchain-based assets in Europe that give users synthetic exposure to private firms like OpenAI and SpaceX through special purpose vehicles, or SPVs.

An SPV is a separate entity that acquires shares in a company. Users then buy tokens of the SPV and don’t have shareholder privileges or voting rights directly in the company.

OpenAI has publicly objected, warning the tokens do not represent real equity and were issued without its approval. In an interview with CNBC International, CEO Vlad Tenev acknowledged the tokens aren’t technically equity shares, but said that misses the broader point.

JPMorgan announces plans to charge for access to customer bank data

“What’s important is that retail customers have an opportunity to get exposure to this asset,” he said, pointing to the disruptive nature of AI and the historically limited access to pre-IPO companies.

“It is true that these are not technically equity,” Tenev added, noting that institutional investors often gain similar exposure through structured financial instruments.

The Bank of Lithuania — Robinhood’s lead regulator in the EU — told CNBC on Monday that it is “awaiting clarifications” following OpenAI’s statement.

“Only after receiving and evaluating this information will we be able to assess the legality and compliance of these specific instruments,” a spokesperson said, adding that information for investors must be “clear, fair, and non-misleading.”

Tenev responded that Robinhood is “happy to continue to answer questions from our regulators,” and said the company built its tokenized stock program to withstand scrutiny.

“Since this is a new thing, regulators are going to want to look at it,” he said. “And we expect to be scrutinized as a large, innovative player in this space.”

SEC Chair Paul Atkins recently called the model “an innovation” on CNBC’s Squawk Box, offering some validation as Robinhood leans further into its synthetic equity strategy — even as legal clarity remains in flux across jurisdictions.

Despite the regulatory noise, many investors remain focused on Robinhood’s upside, and particularly the political tailwinds.

The company is positioning itself as a key beneficiary of Trump’s newly signed megabill, which includes $1,000 government-seeded investment accounts for newborns. Robinhood said it’s already prototyping an app for the ‘Trump Accounts‘ initiative.

WATCH: Watch CNBC’s full interview with Robinhood CEO Vlad Tenev

Watch CNBC's full interview with Robinhood CEO Vlad Tenev

Continue Reading

Environment

Hyundai and Kia are betting on lower-priced EVs to ride out tariffs

Published

on

By

Hyundai and Kia are betting on lower-priced EVs to ride out tariffs

Korean auto giants Hyundai and Kia think lower-priced EVs will help minimize the blow from the new US auto tariffs. Hyundai is set to unveil a new entry-level electric car soon, which will be sold alongside the Kia EV2. Will it be the IONIQ 2?

Hyundai and Kia shift to lower-priced EVs

Hyundai and Kia already offer some of the most affordable and efficient electric vehicles on the market, with models like the IONIQ 5 and EV6.

In Europe, Korea, Japan, and other overseas markets, Hyundai sells the Inster EV (sold as the Casper Electric in Korea), an electric city car. The Inster EV starts at about $27,000 (€23,900), but Hyundai will soon offer another lower-priced EV, similar to the upcoming Kia EV2.

The Inster EV is seeing strong initial demand in Europe and Japan. According to a local report (via Newsis), demand for the Casper Electric is so high that buyers are waiting over a year for delivery.

Advertisement – scroll for more content

Hyundai is doubling down with plans to introduce an even more affordable EV, rumored to be the IONIQ 2. Xavier Martinet, CEO of Hyundai Motor Europe, said during a recent interview that “The new electric vehicle will be unveiled in the next few months.”

Hyundai-Kia-lower-priced-EVs
Hyundai Casper Electric/ Inster EV models (Source: Hyundai)

The new EV is expected to be a compact SUV, which will likely resemble the upcoming Kia EV2. Kia will launch the EV2 in Europe and other global regions in 2026.

Hyundai is keeping most details under wraps, but the expected IONIQ 2 is likely to sit below the Kona Electric as a smaller city EV.

Hyundai-Kia-lower-priced-EVs
Kia Concept EV2 (Source: Kia)

More affordable electric cars are on the way

Although nothing is confirmed, it’s expected to be priced at around €30,000 ($35,000), or slightly less than the Kia EV3.

The Kia EV3 starts at €35,990 in Europe and £33,005 in the UK, or about $42,000. Through the first half of the year, Kia’s compact electric SUV is the UK’s most popular EV.

Hyundai-Kia-lower-priced-EVs
Kia EV3 (Source: Kia)

Like the Hyundai IONIQ models and Kia’s other electric vehicles, the EV3 is based on the E-GMP platform. It’s available with two battery packs: 58.3 kWh or 81.48 kWh, providing a WLTP range of up to 430 km (270 miles) and 599 km (375 miles), respectively.

Hyundai is expected to reveal the new EV at the IAA Mobility show in Munich in September. Meanwhile, Kia is working on a smaller electric car to sit below the EV2 that could start at under €25,000 ($30,000).

Hyundai-Kia-lower-priced-EVs
Kia unveils EV4 sedan and hatchback, PV5 electric van, and EV2 Concept at 2025 Kia EV Day (Source: Kia)

According to the report, Hyundai and Kia are doubling down on lower-priced EVs to balance potential losses from the new US auto tariffs.

Despite opening its new EV manufacturing plant in Georgia to boost local production, Hyundai is still expected to expand sales in other regions. An industry insider explained, “Considering the risk of US tariffs, Hyundai’s move to target the European market with small electric vehicles is a natural strategy.”

Hyundai-Kia-lower-priced-EVs
2025 Hyundai IONIQ 5 (Source: Hyundai)

Although Hyundai is expanding in other markets, it remains a leading EV brand in the US. The IONIQ 5 remains a top-selling EV with over 19,000 units sold through June.

After delivering the first IONIQ 9 models in May, Hyundai reported that over 1,000 models had been sold through the end of June, its three-row electric SUV.

While the $7,500 EV tax credit is still here, Hyundai is offering generous savings with leases for the 2025 IONIQ 5 starting as low as $179 per month. The three-row IONIQ 9 starts at just $419 per month. And Hyundai is even throwing in a free ChargePoint Home Flex Level 2 charger if you buy or lease either model.

Unfortunately, we likely won’t see the entry-level EV2 or IONIQ 2 in the US. However, Kia is set to launch its first electric sedan, the EV4, in early 2026.

Ready to take advantage of the savings while they are still here? You can use our links below to find deals on Hyundai and Kia EV models in your area.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending