Connect with us

Published

on

Recent research has provided new insights into the asteroid that struck Earth 66 million years ago, causing a mass extinction event that led to the end of the dinosaurs. Scientists have now identified this impactor as a carbon-rich “C-type” asteroid, a type of space rock that likely originated in the asteroid belt between Mars and Jupiter. By examining ruthenium isotopes found in the global debris layer left by the impact at the Chicxulub impact crater, researchers have determined that the asteroid’s composition is distinct from Earth’s natural materials. The understanding into the constituents of the asteroid is also expected to help researchers learn about similar future asteroid strikes.

Ruthenium Analysis Points to Asteroid Origin

The research team, including Mario Fischer-Gödde from the University of Cologne, specifically focused on ruthenium because of its scarcity in Earth’s crust, making it an excellent marker for extraterrestrial material. By analyzing samples from locations in Denmark, Italy, and Spain, the team found a consistent isotope composition that matches that of carbonaceous asteroids.

This discovery is significant as it discounts other theories that had suggested the impactor might have been a comet or that volcanic eruptions, such as those from the Deccan Traps, were responsible for the presence of rare metals like ruthenium in the debris layer. The uniformity of the isotope composition across different geographical locations strengthens the case for the asteroid’s extraterrestrial origin.

Asteroid Belt or Oort Cloud: The Likely Source

The study suggests that the asteroid most likely originated from the asteroid belt located between Mars and Jupiter. A collision between two asteroids in this belt may have sent a fragment on a trajectory that ultimately led it to collide with Earth.

However, the possibility that the asteroid came from the more distant Oort cloud, a region that surrounds the solar system, has not been entirely ruled out. This uncertainty leaves room for further exploration and research to better understand the origins of such catastrophic events.

Impact on Our Understanding of Earth’s History

Dr. Craig Walton of the University of Cambridge, though not directly involved in the study, told The Guardian about the significance of this research in advancing our understanding of Earth’s history. While there are still unanswered questions about the exact origins of the asteroid, the study provides crucial insights into the nature of the celestial objects that have played a dramatic role in shaping the planet’s evolutionary path.

These findings contribute to a broader understanding of how such events have influenced the development of life on Earth, offering new perspectives on the vulnerability of our planet to cosmic impacts.

Continue Reading

Science

Battery Breakthrough Could Make Solar Panels Cheaper and More Powerful

Published

on

By

Researchers in China have set a new 27.2 percent efficiency record for perovskite solar cells by fixing chlorine-ion clumping, a major barrier to performance. Their simple potassium-based method creates a uniform film and boosts long-term stability, marking a major step toward commercial adoption and more reliable low-cost solar energy.

Continue Reading

Science

Interstellar Comet 3I/ATLAS Photographed Beside Distant Galaxy in Rare Cosmic Shot

Published

on

By

A new image of interstellar comet 3I/ATLAS captures its glowing tails and a distant barred spiral galaxy, creating a dramatic cosmic overlap. Astronomers say the comet’s unusual features remain natural despite online speculation. With its closest Earth approach in December, researchers are preparing for sharper spacecraft images expected to reveal even more detail.

Continue Reading

Science

ESA’s Euclid Telescope Charts Over a Million Galaxies in Landmark First Data

Published

on

By

ESA’s Euclid space telescope has captured about 1.2 million galaxies in its first year, providing one of the most detailed wide-field surveys of the universe ever made. Covering distances up to 10 billion light-years, Euclid’s clear, expansive imaging is helping astronomers study galaxy shapes, mergers, dwarf galaxy populations, and the role of supermassive black …

Continue Reading

Trending