Connect with us

Published

on

Japan is leading the way in sustainable food waste management through an innovative fermentation process. Koichi Takahashi, founder of the Japan Food Ecology Centre, has developed a method to transform leftover human food into high-quality pig feed. This approach not only reduces waste but also cuts down on greenhouse gas emissions and offers a cost-effective alternative to imported feed. By recycling food waste into nutritious feed, Japan addresses both environmental and economic challenges.

Fermentation Revolutionises Waste Management

The process begins with collecting food scraps from various sources like supermarkets and food manufacturers. At the Japan Food Ecology Center, these scraps, which include everything from leftover rice to vegetable peels, are sorted and shredded. They are then sterilised and fermented using lactic acid bacteria. This method creates a stable, high-nutrient feed that can be stored without refrigeration and has a shelf life of up to ten days.

Benefits Beyond Waste Reduction

The ecofeed not only helps in managing waste but also supports local pig farmers. It reduces feed costs by about 50% compared to conventional feed and improves the quality of pork. Farmers like Dan Kawakami of Azumino Eco Farm have noticed better meat quality and enhanced cost efficiency. This sustainable feed has gained popularity, contributing to an annual sales boost and establishing a new market for eco-friendly pork products.

A Model for Sustainability

Japan’s food waste recycling system is a successful example of integrating traditional practices with modern technology. The fermentation technique draws on Japan’s rich history in fermentation science and demonstrates how ancient methods can address contemporary environmental issues. Takahashi’s initiative has become a model for other facilities in Japan, showing that sustainability and profitability can go hand in hand. His centre processes 35,000 tons of food waste annually, generating not only feed but also renewable energy and high-quality fertiliser.

This innovative approach not only tackles Japan’s food waste problem but also sets a standard for how other nations might address similar challenges through sustainable practices.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Banana Apocalypse Could Be Averted Thanks to Genetic Breakthrough



Redmi Pad SE 8.7 4G, Redmi Pad SE 8.7 With 6,650mAh Battery Launched: Price, Specifications

Continue Reading

Science

Did Our Ancestors Use Tools 3 Million Years Ago?

Published

on

By

Did Our Ancestors Use Tools 3 Million Years Ago?

New research on australopithecine hand anatomy suggests that Lucy, one of the oldest known ancestors to humans, and her species might have engaged in tool-related activities over 3 million years ago. This revelation, based on muscle attachment studies, implies that some early hominins may have manipulated objects long before the Homo genus emerged.

The study, published in Journal of Human Evolution, was led by paleoanthropologist Fotios Alexandros Karakostis from the University of Tübingen, Germany. Researchers analysed hand muscle attachment sites, known as entheses, in three different australopithecine species and compared them with human and ape hand bones. It was observed that muscle attachment points on these ancient hand bones suggest frequent use of grasping and manipulation similar to human tool use. “While there is no direct evidence that these hominins created tools, their hand structures show they likely performed activities involving precise grip and object manipulation,” explained Karakostis.

Evolving Dexterity in Early Hominins

The study, which was published in the November issue of the Journal of Human Evolution, indicate that australopithecines, particularly Australopithecus afarensis and Australopithecus sediba, may have possessed dexterity akin to modern humans. The recent species among these, A. sediba, had a more humanlike hand compared to its earlier relatives, which retained both ape and human traits in their hand structure. The study further reveals that the placement and adaptation of muscle attachment sites in these species highlight how their hands might have been used to manage tasks such as food preparation, grasping, and perhaps even using primitive tools.

Jana Kunze, a paleoanthropologist also from the University of Tübingen, noted that the development of the first dorsal interosseus muscle between the thumb and index finger might have supported a precise grip. This feature, coupled with adaptations in the pinky finger, would have enhanced the species’ ability to manipulate objects effectively, providing essential functionality that may have led to technological advancements among early hominins.

Although Homo habilis, known as “handyman” due to its association with early stone tools, is traditionally credited as the first toolmaker, this study challenges the assumption that australopithecines lacked the anatomical ability for tool creation. Tracy Kivell, Director of Human Origins at the Max Planck Institute for Evolutionary Anthropology, observed that each australopithecine species may have developed unique hand adaptations, potentially using their dexterity for both tool use and climbing.

This analysis adds evidence to the hypothesis that certain humanlike traits in dexterity emerged before the evolution of the Homo genus, pushing back the timeline of possible tool use to australopithecines over 3 million years ago.

(Except for the headline, this story has not been edited by NDTV staff and is published from a press release)

Continue Reading

Science

Indian Scientists Engineer Bacteria To Perform Math Operations

Published

on

By

Indian Scientists Engineer Bacteria To Perform Math Operations

Genetic engineering efforts at the Saha Institute of Nuclear Physics (SINP) in Kolkata have recently produced a type of bacteria that can perform mathematical operations. This breakthrough demonstrates that bacterial cells, when modified, can conduct addition, subtraction and even identify prime numbers between 0 and 9. The work by Indian researchers suggests a possible foundation for creating biocomputers—devices that utilise living cells for computation. This research could drive forward the integration of biological systems within computational science.

Biocomputing’s Evolution and Emerging Capabilities

The study was published in the journal Nature Chemical Biology. The use of living cells for computing has seen two decades of incremental progress. Initially, synthetic biology allowed scientists to develop cellular logic gates for fundamental operations like “AND,” “OR,” and “NOT,” mimicking the functions of silicon processors but on a much simpler level. By adjusting genetic networks in organisms like E. coli and yeast, researchers were able to prompt cells to perform addition and subtraction. However, the operations achieved in these early studies remained basic in scope, not yet matching the complexity of modern digital processors.

Advances in Bacterial Computation through Neural Network Principles

In their current work, SINP scientists applied artificial neural network models to the genetic framework of E. coli bacteria, integrating 14 unique genetic circuits to form distinct bacterial types. These bacteria were placed in controlled liquid environments, where they could execute computations including determining whether numbers are prime. For example, when subjected to specific chemical stimuli, the bacteria signalled their responses by secreting proteins that indicated “yes” in green and “no” in red. This application of bacteria to solve more abstract problems, such as identifying prime numbers, marks a first in biological computing.

Implications for Future Research

According to Mohit Kumar Jolly, an assistant professor at the Indian Institute of Science in Bangalore, the study could provide insights into the decision-making abilities of cells, a process that yet to be fully understood. The findings open up new avenues in the study of biological information processing and reveal untapped potential for living cells in computational applications. This work by SINP researchers may well redefine the scope of computation, revealing bacteria’s potential as a biological computing medium.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Apple Reportedly Working on ‘AI Wall Tablet’ With Smart Home Controls and Apple Intelligence



BSNL Direct-to-Device Satellite Connectivity Launch Announced by DoT

Continue Reading

Science

Did Mars Once Have Oceans? China’s Rover Zhurong Reveals New Clues

Published

on

By

Did Mars Once Have Oceans? China’s Rover Zhurong Reveals New Clues

Evidence of an ancient ocean on Mars has been potentially uncovered by China’s Zhurong rover, scientists report. Data gathered by the now-defunct rover indicates a possible ancient shoreline in Mars’ northern hemisphere. Researchers at Hong Kong Polytechnic University, including lead scientist Bo Wu, believe these findings support long-standing theories of a large Martian ocean that existed billions of years ago. The Zhurong rover, which travelled approximately 2 kilometres within the Utopia Planitia basin, relayed this data through observations from its onboard cameras and ground-penetrating radar.

The study describing the findings was published in the journal Scientific Reports. Through Zhurong’s exploration, researchers identified features possibly related to water activity, including pitted cones, channels, and formations resembling mud volcanoes. Such structures, the scientists suggest, could represent a coastal landscape shaped by the once-existing ocean. Further analysis of the surface deposits indicates that the ocean may have existed around 3.68 billion years ago, potentially containing silt-laden water that left distinct geological layers on the Martian landscape.
Complex History of Water on Mars

The research team posits that Mars’ ancient ocean may have experienced phases of freezing and thawing, contributing to the formation of the observed coastline. Sergey Krasilnikov of Hong Kong Polytechnic University noted that the ocean may have frozen over for about 10,000 to 100,000 years before completely drying up, roughly 260 million years later. Wu acknowledged the difficulty in conclusively determining the shoreline due to erosion over millennia but proposed that asteroid impacts could have preserved certain regions of the coastline.

Future Prospects for Verifying Mars’ Water History

Despite Zhurong’s findings, scientists acknowledge that definitive evidence of Mars’ ancient water history will require analysis of Martian samples on Earth. China’s Tianwen 3 mission, set to launch in 2028, aims to return surface samples by 2031. In comparison, NASA’s Mars Sample Return mission is projected to return samples in the 2030s.

Continue Reading

Trending