Electric micromobility specialist Macfox Bikes is showing off two of its best models and offering an exclusive discount to Electrek readers. Whether it’s the X1S commuter, all-terrain-ready X2, or one of the brand’s other bikes, Macfox is passing on the savings to its loyal community of riders.
Table of contents
Some modified Macfox Bikes
Macfox Bikes should be on your radar
If you have not heard of electric mobility brand Macfox Bikes, you should check them out. It is currently a well-respected brand in the world of eBikes, thanks to a loyal following of riders who appreciate its commitment to quality, innovation, and adventure.
Born from a love of nature and exploration, Macfox Bikes consistently showcases its commitment to creating unique electric bikes bolstered by advanced technology and careful design. One look at the brand’s Instagram page will show you just how much they encourage riders to customize their Macfox bikes to reflect their unique vision and skills, as well as a loyal community of wheelie enthusiasts.
There, you’ll see a striking black and purple combination—cool and eye-catching, making one of its riders the most dazzling on the road. You’ll also find the classic black-and-white color scheme (seen above)—elegant yet playful. The various customization styles all highlight Macfox’s ease of use and powerful modifiability.
Meanwhile, Macfox’s highly affordable prices have eBike enthusiasts falling in love. Take the X1S, for example.
The X1S eBike/ Source: Macfox Bikes
The X1S electric commuter bike
If you want to get a feel for what Macfox Bikes is all about, look no further than the X1S. This all-electric commuter is sleek at its core design but offers plenty of room for add-ons and body customizations to your liking, including brown or black trim, fenders, and a storage pack.
The X1S was designed for easy handling. Its extra-long, comfortable saddle enables all-day riding, perfect for commuters and city dwellers. Its 500-watt (peak 750W) geared hub brushless motor is robust enough to deliver a top speed of 25 mph.
An included 48V 10.4Ah lithium battery pack offers up to 38 miles of range on a single charge, but you can double that figure by adding a second pack to your order for an extra $300. Other features include a futuristic front light (seen above) with a consistently lit outer ring and an inner light that can be flipped on and off with a switch on its handlebars.
Interested? The X1S commuter bike is now available on Macfox’s website at a starting price of $999. However, you can use Electrek’s exclusive promo code below for a discount. Even at its standard price, the X1S is one of the most cost-effective options in the commuter eBike category.
The X2 eBike: Source: Macfox Bikes
The X2 eBike can handle any terrain with ease
With the X2 electric mountain bike, Macfox has taken the blueprint of the X1S and fortified it to handle all the elements you throw at it. This exclusive model features a durable 6061 aluminum frame, front and rear hydraulic disc brakes, a fully adjustable dual suspension, and all-terrain fat tires.
You can also enjoy the extra-long saddle seat for added comfort while riding all day on whatever trails you find yourself ripping around on.
The X2 has a 750-watt (peak 1,000W) geared hub brushless motor that can propel you up to 29 mph and a 48V 20Ah battery pack from Samsung that promises up to 45 miles of range on a single charge. Like its X1S sibling, Macfox Bikes offers an optional second-pack add-on for $500 that can get you over 90 miles of range.
Ride harder and go farther than ever before with the long-range X2 electric mountain bike. It can be yours today for $1,699 before you apply our promo code.
Source: Macfox Bikes
Macfox has created a healthy and active community culture
Macfox wholeheartedly believes that an active and healthy community culture can significantly enhance the connection between a brand and its customers. By establishing a platform for positive interaction, brands cannot only maintain close contact with customers, but also cultivate loyalty and trust.
The core of community culture lies in co-creation and participation, making customers feel that they are a part of the Macfox’s continued growth. This emotional connection promotes the long-term development of the brand and helps attract more potential customers through word-of-mouth.
Macfox does an excellent job in this regard. When you join the Macfox community, you’ll see its community is very engaged. They spontaneously discuss product performance, share their experiences and host giveaways. Community members also get the first access to promotions. Speaking of promotions…
Another modified Macfox Bike
Electrek readers can save 10% off Macfox Bikes today
If you’re interested in purchasing a shiny new eBike from Macfox, you can take advantage of additional savings for Electrek readers. In addition to top-of-the-line bikes, Macfox offers a variety of accessories developed from user feedback to enhance customer satisfaction and trust.
Also, Macfox’s team of product specialists is available after your purchase to help with any questions or concerns and will respond quickly to any inquiries.
The off-highway equipment experts at Perkins and McElroy have teamed up to develop a plug-and-play battery electric power unit designed to help equipment OEMs and upfitters to seamlessly transition from diesel to battery electric power.
Designed to occupy the same space as the companies’ diesel-engined power units, Perkins dropped its new battery power unit into the similarly new McElroy TracStar 900i pipe fusion machine (specialized equipment used to join thermoplastic pipes like HDPE or polypropylene by heat-welding them end-to-end to form a continuous length pf pipe).
Perkins’ battery electric power unit replaces the company’s proprietary 134 hp, 3.6 liter 904 Series Tier V diesel engine, enabling units that are already deployed to be quickly upgraded to electric power – and helping trade allies and development partners to easily retrofit existing equipment in order to add zero-emission options to their operational fleet.
“We’re actively helping customers navigate the shift in power system requirements, with a range of advanced power systems including electric, diesel-electric and alternative fuel compatible engines,” says Jaz Gill, vice president, global sales, marketing at Perkins. “When it comes to the innovative fully integrated battery electric power unit, it can be ‘dropped in’ to a machine to replace a diesel engine. The system consists of a Perkins battery along with inverters, motors and on-board chargers – all packaged up into a compact drop-in system to support seamless transition from diesel to electric for our customers looking to make that move.”
Advertisement – scroll for more content
McElroy believes that an electric, emissions-free power unit like this one will open new opportunities and applications for its customers.
“Their team has done a phenomenal job of integrating their battery electric system into our TracStar 900i,” explains McElroy President and CEO Chip McElroy. “We’re really excited to see what the market thinks about this concept.”
Development of the battery electric powered pipe fusion machine was completed in about nine months. Future Perkins-powered electric equipment running the 904 diesel (small excavators, telehandlers, pumps, and gensets) could be developed even more quickly. You can find out more in the company’s promo video, below.
British ultra-luxe brand Bentley is teasing the upcoming, first-ever all electric model that will take it into the 2030s with a new concept car inspired by the iconic 1930 “Blue Train” Speed Six coupe – and it looks fantastic!
More than any other brand, Bentley was defined by its engine. For decades, in fact, the only meaningful mechanical difference between a Rolls-Royce and a Bentley was the 6.75L twin-turbocharged V8 engine under the flying B hood ornament.
That all changed at the dawn of the twenty-first century. Rolls-Royce was acquired by BMW, while Volkswagen took the reins at Bentley, setting both brands on distinct paths. Now, without its own engine, Bentley faces the challenge of proving to discerning buyers that its cars justify a premium over its mechanical cousins at VW, Audi, and Porsche. That’s why the company is looking to it pre-Rolls merger past, all the way back to the legendary 1930 “Blue Train” Speed Six coupe.
Bentley Blue Train EXP 15 concept
EXP 15 concept and 1930 Blue Train; via Bentley.
“Bentley’s then-chairman Woolf Barnato had a Speed Six four-door Weymann fabric saloon by H J Mulliner, which he used to race the Blue Train in 1930,” explains Darren Day, Bentley’s Head of Interior Design. “Meanwhile, he had a unique one-of-one Speed Six coupe being built, with a body by Gurney Nutting. Even though the coupe wasn’t finished when the race took place, it’s that car (the coupe) that’s become associated with it and has since become an iconic Bentley. What we were influenced by is the idea of a three-seat car with a unique window line and super slick proportions used for grand tours.”
Advertisement – scroll for more content
The EXP 15 concept car features a unique, three-door, three-passenger layout under a sweeping, dramatic roofline lifted from the 1930 tourer. “The seat can rotate and you step out, totally unflustered, not trying to clamber out of the car like you see with some supercars,” continued Day, before dropping the biggest hint yet as to who they’re building the car for. “You just get out with dignity and the Instagram shot is perfect.”
Bentley EXP 15 interior
While almost no technical specs have been revealed other than “full electric,” Bentley says its new concept’s innovative interior layout allows passengers to stretch out in comfort alongside accessible storage compartments that can house a bar, hand luggage, or even pets. The EXP 15 even offers tailgate seating for outdoor parties or suburban soccer games.
But, while the new concept is tall, Bentley hopes it manages to offer the commanding driving position and comfort of an SUV while giving off the “vibe” of a classic grand tourer – something Bentley thinks could be the next wave of the luxury car market.
“The beauty of a concept car is not just to position our new design language, but to test where the market’s going,” offers Robin Page, Bentley Director of Design. “It’s clear that SUVs are a growing segment and we understand the GT market … but the trickiest segment is the sedan because it’s changing. Some customers want a classic ‘three-box’ sedan shape, others a ‘one-box’ design, and others again something more elevated. So this was a chance for us to talk to people and get a feeling.”
As before: no specs, no range estimates, and no promises about if and nothing definitive about when the oft-promised all-electric Bentley will finally bow – but this is certain: when it does arrive, it will be big, brash, and fast.
Electrek’s Take
Now that SUVs are everywhere and in every segment, automakers are desperate to explore or open new niches, hoping to find that next “SUV-like” growth segment. As weird as the three-door, three-seat EXP 15’s interior layout is, you have to admit that it’s different. And, for a vehicle that spends 90% of its time with just one person inside it, it might be more than practical enough.
Let us know if you think Bentley has a winner, or just another concept car gimmick on its hands in the comments.
he 30% federal solar tax credit is ending this year. If you’ve ever considered going solar, now’s the time to act. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
A stack of old mobile phones are seen before recycling process in Kocaeli, Turkiye on October 14, 2024.
Anadolu | Anadolu | Getty Images
As the U.S. and China vie for economic, technological and geopolitical supremacy, the critical elements and metals embedded in technology from consumer to industrial and military markets have become a pawn in the wider conflict. That’s nowhere more so the case than in China’s leverage over the rare earth metals supply chain. This past week, the Department of Defense took a large equity stake in MP Materials, the company running the only rare earths mining operation in the U.S.
But there’s another option to combat the rare earths shortage that goes back to an older idea: recycling. The business has come a long way from collecting cans, bottles, plastic, newspaper and other consumer disposables, otherwise destined for landfills, to recreate all sorts of new products.
Today, next-generation recyclers — a mix of legacy companies and startups — are innovating ways to gather and process the ever-growing mountains of electronic waste, or e-waste, which comprises end-of-life and discarded computers, smartphones, servers, TVs, appliances, medical devices, and other electronics and IT equipment. And they are doing so in a way that is aligned to the newest critical technologies in society. Most recently, spent EV batteries, wind turbines and solar panels are fostering a burgeoning recycling niche.
The e-waste recycling opportunity isn’t limited to rare earth elements. Any electronics that can’t be wholly refurbished and resold, or cannibalized for replacement parts needed to keep existing electronics up and running, can berecycled to strip out gold, silver, copper, nickel, steel, aluminum, lithium, cobalt and other metals vital to manufacturers in various industries. But increasingly, recyclers are extracting rare-earth elements, such as neodymium, praseodymium, terbium and dysprosium, which are critical in making everything from fighter jets to power tools.
“Recycling [of e-waste] hasn’t been taken too seriouslyuntil recently” as a meaningful source of supply, said Kunal Sinha, global head of recycling at Swiss-based Glencore, a major miner, producer and marketer of metals and minerals — and, to a much lesser but growing degree, an e-waste recycler. “A lot of people are still sleeping at the wheel and don’t realize how big this can be,” Sinha said.
Traditionally, U.S. manufacturers purchase essential metals and rare earths from domestic and foreign producers — an inordinate number based in China — that fabricate mined raw materials, or through commodities traders. But with those supply chains now disrupted by unpredictable tariffs, trade policies and geopolitics, the market for recycled e-waste is gaining importance as a way to feed the insatiable electrification of everything.
“The United States imports a lot of electronics, and all of that is coming with gold and aluminum and steel,” said John Mitchell, president and CEO of the Global Electronics Association, an industry trade group. “So there’s a great opportunity to actually have the tariffs be an impetus for greater recycling in this country for goods that we don’t have, but are buying from other countries.”
With copper, other metals, ‘recycling is going to play huge role’
Although recycling contributes only around $200 million to Glencore’s total EBITDA of nearly $14 billion, the strategic attention and time the business gets from leadership “is much more than that percentage,” Sinha said. “We believe that a lot of mining is necessary to get to all the copper, gold and other metals that are needed, but we also recognize that recycling is going to play a huge role,” he said.
Glencore has operated a huge copper smelter in Quebec, Canada, for almost 20 years on a site that’s nearly 100-years-old. The facility processes mostly mined copper concentrates, though 15% of its feedstock is recyclable materials, such as e-waste that Glencore’s global network of 100-plus suppliers collect and sort. The smelter pioneered the process for recovering copper and precious metals from e-waste in the mid 1980s, making it one of the first and largest of its type in the world. The smelted copper is refined into fresh slabs that are sold to manufacturers and traders. The same facility also produces refined gold, silver, platinum and palladium recovered from recycling feeds.
The importance of copper to OEMs’ supply chains was magnified in early July, when prices hit an all-time high after President Trump said he would impose a 50% tariff on imports of the metal. The U.S. imports just under half of its copper, and the tariff hike — like other new Trump trade policies — is intended to boost domestic production.
Stock Chart IconStock chart icon
Price of copper year-to-date 2025.
It takes around three decades for a new mine in the U.S. to move from discovery to production, which makes recycled copper look all the more attractive, especially as demand keeps rising. According to estimates by energy-data firm Wood Mackenzie, 45% of demand will be met with recycled copper by 2050, up from about a third today.
Foreign recycling companies have begun investing in the U.S.-based facilities. In 2022, Germany’s Wieland broke ground on a $100-million copper and copper alloy recycling plant in Shelbyville, Kentucky. Last year, another German firm, Aurubis, started construction on an $800-million multi-metal recycling facility in Augusta, Georgia.
“As the first major secondary smelter of its kind in the U.S., Aurubis Richmond will allow us to keep strategically important metals in the economy, making U.S. supply chains more independent,” said Aurubis CEO Toralf Haag.
Massive amounts of e-waste
The proliferation of e-waste can be traced back to the 1990s, when the internet gave birth to the digital economy, spawning exponential growth in electronically enabled products. The trend has been supercharged by the emergence of renewable energy, e-mobility, artificial intelligence and the build-out of data centers. That translates to a constant turnover of devices and equipment, and massive amounts of e-waste.
In 2022, a record 62 million metric tons of e-waste were produced globally, up 82% from 2010, according to the most recent estimates from the United Nations’ International Telecommunications Union and research arm UNITAR. That number is projected to reach 82 million metric tons by 2030.
The U.S., the report said, produced just shy of 8 million tons of e-waste in 2022. Yet only about 15-20% of it is properly recycled, a figure that illustrates the untapped market for e-waste retrievables. The e-waste recycling industry generated $28.1 billion in revenue in 2024, according to IBISWorld, with a projected compound annual growth rate of 8%.
Whether it’s refurbished and resold or recycled for metals and rare-earths, e-waste that stores data — especially smartphones, computers, servers and some medical devices — must be wiped of sensitive information to comply with cybersecurity and environmental regulations. The service, referred to as IT asset disposition (ITAD), is offered by conventional waste and recycling companies, including Waste Management, Republic Services and Clean Harbors, as well as specialists such as Sims Lifecycle Services, Electronic Recyclers International, All Green Electronics Recycling and Full Circle Electronics.
“We’re definitely seeing a bit of an influx of [e-waste] coming into our warehouses,” said Full Circle Electronics CEO Dave Daily, adding, “I think that is due to some early refresh cycles.”
That’s a reference to businesses and consumers choosing to get ahead of the customary three-year time frame for purchasing new electronics, and discarding old stuff, in anticipation of tariff-related price increases.
Daily also is witnessing increased demand among downstream recyclers for e-waste Full Circle Electronics can’t refurbish and sell at wholesale. The company dismantles and separates it into 40 or 50 different types of material, from keyboards and mice to circuit boards, wires and cables. Recyclers harvest those items for metals and rare earths, which continue to go up in price on commodities markets, before reentering the supply chain as core raw materials.
Even before the Trump administration’s efforts to revitalize American manufacturing by reworking trade deals, and recent changes in tax credits key to the industry in Trump’s tax and spending bill, entrepreneurs have been launching e-waste recycling startups and developing technologies to process them for domestic OEMs.
“Many regions of the world have been kind of lazy about processing e-waste, so a lot of it goes offshore,” Sinha said. In response to that imbalance, “There seems to be a trend of nationalizing e-waste, because people suddenly realize that we have the same metals [they’ve] been looking for” from overseas sources, he said. “People have been rethinking the global supply chain, that they’re too long and need to be more localized.”
China commands 90% of rare earth market
Several startups tend to focus on a particular type of e-waste. Lately, rare earths have garnered tremendous attention, not just because they’re in high demand by U.S. electronics manufacturers but also to lessen dependence on China, which dominates mining, processing and refining of the materials. In the production of rare-earth magnets — used in EVs, drones, consumer electronics, medical devices, wind turbines, military weapons and other products — China commands roughly 90% of the global supply chain.
The lingering U.S.–China trade war has only exacerbated the disparity. In April, China restricted exports of seven rare earths and related magnets in retaliation for U.S. tariffs, a move that forced Ford to shut down factories because of magnet shortages. China, in mid-June, issued temporary six-month licenses to certain major U.S. automaker suppliers and select firms. Exports are flowing again, but with delays and still well below peak levels.
The U.S. is attempting to catch up. Before this past week’s Trump administration deal, the Biden administration awarded $45 million in funding to MP Materials and the nation’s lone rare earths mine, in Mountain Pass, California. Back in April, the Interior Department approved development activities at the Colosseum rare earths project, located within California’s Mojave National Preserve. The project, owned by Australia’s Dateline Resources, will potentially become America’s second rare earth mine after Mountain Pass.
A wheel loader takes ore to a crusher at the MP Materials rare earth mine in Mountain Pass, California, U.S. January 30, 2020. Picture taken January 30, 2020.
Steve Marcus | Reuters
Meanwhile, several recycling startups are extracting rare earths from e-waste. Illumynt has an advanced process for recovering them from decommissioned hard drives procured from data centers. In April, hard drive manufacturer Western Digital announced a collaboration with Microsoft, Critical Materials Recycling and PedalPoint Recycling to pull rare earths, as well as copper, gold, aluminum and steel, from end-of-life drives.
Canadian-based Cyclic Materials invented a process that recovers rare-earths and other metals from EV motors, wind turbines, MRI machines and data-center e-scrap. The company is investing more than $20 million to build its first U.S.-based facility in Mesa, Arizona. Late last year, Glencore signed a multiyear agreement with Cyclic to provide recycled copper for its smelting and refining operations.
Another hot feedstock for e-waste recyclers is end-of-life lithium-ion batteries, a source of not only lithium but also copper, cobalt, nickel, manganese and aluminum. Those materials are essential for manufacturing new EV batteries, which the Big Three automakers are heavily invested in. Their projects, however, are threatened by possible reductions in the Biden-era 45X production tax credit, featured in the new federal spending bill.
It’s too soon to know how that might impact battery recyclers — including Ascend Elements, American Battery Technology, Cirba Solutions and Redwood Materials — who themselves qualify for the 45X and other tax credits. They might actually be aided by other provisions in the budget bill that benefit a domestic supply chain of critical minerals as a way to undercut China’s dominance of the global market.
Nonetheless, that looming uncertainty should be a warning sign for e-waste recyclers, said Sinha. “Be careful not to build a recycling company on the back of one tax credit,” he said, “because it can be short-lived.”
Investing in recyclers can be precarious, too, Sinha said. While he’s happy to see recycling getting its due as a meaningful source of supply, he cautions people to be careful when investing in this space. Startups may have developed new technologies, but lack good enough business fundamentals. “Don’t invest on the hype,” he said, “but on the fundamentals.”
Glencore, ironically enough, is a case in point. It has invested $327.5 million in convertible notes in battery recycler Li-Cycle to provide feedstock for its smelter. The Toronto-based startup had broken ground on a new facility in Rochester, New York, but ran into financial difficulties and filed for Chapter 15 bankruptcy protection in May, prompting Glencore to submit a “stalking horse” credit bid of at least $40 million for the stalled project and other assets.
Even so, “the current environment will lead to more startups and investments” in e-waste recycling, Sinha said. “We are investing ourselves.”