Connect with us

Published

on

Two NASA astronauts who flew to the International Space Station (ISS) in June aboard Boeing’s faulty Starliner capsule will need to return to Earth on a SpaceX vehicle early next year, NASA officials said on Saturday, deeming issues with Starliner’s propulsion system too risky to carry its first crew home as planned.

Veteran NASA astronauts Butch Wilmore and Sunita Williams, both former military test pilots, became the first crew to ride Starliner on June 5 when they were launched to the ISS for what was expected to be an eight-day test mission.

But Starliner’s propulsion system suffered a series of glitches in the first 24 hours of its flight to the ISS that has so far kept the astronauts on the station for 79 days as Boeing scrambled to investigate the issues.

NASA officials told reporters during a news conference in Houston that Wilmore and Williams, both former military test pilots, are safe and prepared to stay even longer. They will use their extra time to conduct science experiments alongside the station’s other seven astronauts, NASA said.

In a rare reshuffling of NASA’s astronaut operations, the two astronauts are now expected to return in February 2025 on a SpaceX Crew Dragon spacecraft due to launch next month as part of a routine astronaut rotation mission. Two of the Crew Dragon’s four astronaut seats will be kept empty for Wilmore and Williams.

The agency’s decision, tapping Boeing’s top space rival to return the astronauts, is one of NASA’s most consequential in years. Boeing had hoped its Starliner test mission would redeem the troubled program after years of development problems and over $1.6 billion in budget overruns since 2016.

Five of Starliner’s 28 thrusters failed during flight and it sprang several leaks of helium, which is used to pressurize the thrusters. It was still able to dock with the station, a football field-sized laboratory that has housed rotating crews of astronauts for over two decades.

NASA said in a statement Starliner will undock from the ISS without a crew in “early September.” The spacecraft will attempt to return to Earth autonomously, forgoing a core test objective of having a crew present and in control for the return trip.

“I know this is not the decision we had hoped for, but we stand ready to carry out the action’s necessary to support NASA’s decision,” Boeing’s Starliner chief Mark Nappi told employees in an email.

“The focus remains first and foremost on ensuring the safety of the crew and spacecraft,” Nappi said.

Several senior NASA officials and Boeing representatives made the decision during a Saturday morning meeting in Houston.

NASA’s space operations chief Ken Bowersox said agency officials unanimously voted for Crew Dragon to bring the astronauts home. Boeing voted for Starliner, which it said was safe.

Nelson told reporters at a news conference in Houston that he discussed the agency’s decision with Boeing’s new CEO Kelly Ortberg and was confident Boeing would continue its Starliner program. Nelson said he was “100 percent” certain the spacecraft would fly another crew in the future.

“He expressed to me an intention that they will continue to work the problems once Starliner is back safely,” Nelson said of Ortberg.

Boeing struggled for years to develop Starliner, a gumdrop-shaped capsule designed to compete with Crew Dragon as a second US option for sending astronaut crews to and from Earth’s orbit. The company is also struggling with quality issues on production of commercial planes, its most important products.

Starliner failed a 2019 test to launch to the ISS uncrewed, but mostly succeeded in a 2022 do-over attempt where it also encountered thruster problems. Its June mission with its first crew was required before NASA can certify the capsule for routine flights, but now Starliner’s crew certification path is uncertain.

The drawn-out mission has cost Boeing $125 million (roughly Rs. 1,048 crore), securities filings show. The company arranged tests and simulations on Earth to gather data that it has used to try and convince NASA officials that Starliner is safe to fly the crew back home.

But results from that testing raised more difficult engineering questions and ultimately failed to quell NASA officials’ concerns about Starliner’s thrusters and its ability to make a crewed return trip, the most daunting and complex part of the test mission.

“There was just too much uncertainty in the prediction of the thrusters,” NASA’s commercial crew program chief Steve Stich told reporters.

Starliner’s now-uncertain path to receiving a long-sought NASA certification will add to the crises faced by Ortberg, who started this month with the goal to rebuild the planemaker’s reputation after a door panel dramatically blew off a 737 MAX passenger jet in midair in January.

© Thomson Reuters 2024

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Continue Reading

Science

James Webb Telescope Detects Potential Gas Giant Exoplanet Just 4 Light-Years Away

Published

on

By

James Webb Telescope Detects Potential Gas Giant Exoplanet Just 4 Light-Years Away

New observational evidence from the James Webb Space Telescope (JWST), which has yet to launch, may change that. JWST astronomers have found tantalising hints of an orbiting gas giant around Alpha Centauri A, the closest Sun-like star to us. Located just four light-years away in the Alpha Centauri triple-star system, the potential planet sits within the star’s habitable zone — the region where liquid water could exist — but its gas giant nature makes it inhospitable to life. Even so, its location and distinctiveness make the detection among the most captivating detections in exoplanetary exploration prior.

JWST Unveils Possible Closest Sun-Like Star Exoplanet, Awaiting Confirmation

According to a NASA report, this was done with the JWST Mid-Infrared Instrument (MIRI) using a coronagraphic mask to block out stellar glare. This method caught sight of an object which is almost 10,000 times fainter than Alpha Centauri A and at a separation of around two astronomical units. If upheld, it would be the nearest exoplanet to a similar being ever pictured and, moreover, the first healthy globe discovered in direct significance.

Researchers noted that while Alpha Centauri already hosts two confirmed planets around the red dwarf Proxima Centauri, no planet has yet been confirmed around Alpha Centauri A. Follow-up JWST observations did not capture the planet again, possibly because it was too close to the star during the imaging. Computer simulations support this possibility.

The team wants to look for more evidence using both JWST and the yet-to-be-launched Nancy Grace Roman Space Telescope, due in May 2027. Confirmation would represent a watershed moment in planetary system science, where astronomers are looking into embryonic solar systems around other stars.

Researchers said the potential planet’s existence in such a dynamic binary star system could challenge current models of planetary formation and survival. Two papers detailing the findings have been accepted for publication in The Astrophysical Journal Letters.

Continue Reading

Science

Earliest Known Black Hole Found Just 500 Million Years After the Big Bang

Published

on

By

Earliest Known Black Hole Found Just 500 Million Years After the Big Bang

Astronomers have discovered the most distant black hole yet, an ancient quasar more than 13 billion light years from our own Earth, incredibly close to the limit of where scientists even expect supermassive black holes to form. The cosmic behemoth of a galaxy, known as CAPERS-LRD-z9, provides a wide-window echo back in time to one of the furthest peeks into our early universe yet, only shortly after the Big Bang, when our cosmos was a fraction (3%) of its current age. Now, researchers led by those in The University of Texas at Austin’s Cosmic Frontier team have found what are likely very powerful gas outflows and also evidence that some of the very first black holes were born much, much heavier than previously believed.

Early Black Hole Found in ‘Little Red Dot’ Galaxy Challenges Growth Models

According to a study published in The Astrophysical Journal this week, researchers led by those at The University of Texas at Austin’s Cosmic Frontier team are announcing they have made the most sensitive measurements to date less than a billion years after the Big Bang, and these neonatal black holes were producing gas outflows fast enough — and over a long enough period — to halt stars forming in surrounding galaxies.

More recently discovered, the Little Red Dots galaxy appears to be just the sort of ominous-sounding crimson that would shoot a vibrant deep red due to intense radiation taking place among giant black holes and gas clouds.

A little galaxy of mass in all that more than enough of less, those hundreds of millions of suns among which all those stars are caught. This, in turn, birthed the supermassive galactic monsters — either quickly overcooked giants or premature sizes.

JWST high-z key science theme & imaging science exposure for mapping the process of supermassive black hole formation, growth, and evolution at high spatial detail.

Continue Reading

Science

Greenland’s Melting Glaciers Feed Ocean Life, Study Finds

Published

on

By

Greenland's Melting Glaciers Feed Ocean Life, Study Finds

The process of Greenland’s ice sheet melting is not only raising sea levels, it is also feeding life in the ocean. As the most productive for marine life, phytoplankton harvesting energy from this nutrient-filled climate change is altering how this biological pump works in these warming ares. In a new study, scientists employed cutting-edge computer models to simulate the intricate movements of ice melt and seawater with ocean currents and marine biology behaviour finnesing adding more detail to an understanding of these unseen forces between Earth’s shifting polar zones.

Glacial Melt Fuels a Surge in Ocean Life

According to precious study, each summer Jakobshavn Glacier releases more than 300,000 gallons of freshwater per second into the sea. This less-dense meltwater shoots upward through heavier, salty seawater, dragging deep-sea nutrients—like iron and nitrate—toward the sunlit surface. These nutrients are essential for phytoplankton, which are the foundation of the ocean food chain.

In recent decades, NASA satellite data recorded a 57% surge in Arctic phytoplankton, and scientists now have a clearer picture of why. The nutrient boost is especially crucial in late summer, when spring blooms have already depleted surface waters. Without direct access to such remote regions, researchers had long struggled to test the nutrient-plume hypothesis—until now.

NASA’s Digital Ocean Brings Clarity Beneath the Ice

To simulate the chaotic waters of Greenland’s fjords, researchers used the ECCO-Darwin model, developed by NASA’s Jet Propulsion Laboratory and MIT. Fueled by billions of ocean measurements—temperature, salinity, pressure—this model replicates how biology, chemistry, and physics interact. Using NASA’s supercomputers at Ames Research Center, the team calculated a 15–40% increase in phytoplankton growth from glacial nutrients.

Yet more change looms: as melting accelerates, seawater may lose its ability to absorb CO₂ even as plankton pull more of it in. “Like a Swiss Army knife,” said researcher Michael Wood, “this model helps us explore ecosystems far beyond Greenland.”

Continue Reading

Trending