Connect with us

Published

on

Physicists have recently observed an unexpected phenomenon in a superconducting material, potentially pushing the boundaries of what’s possible in this field. The discovery centres on a material typically known as an electrical insulator. In this insulator, researchers found that electrons could pair up at temperatures as high as minus 123 degrees Celsius (minus 190 degrees Fahrenheit). This finding could pave the way toward achieving superconductors that work at room temperature, a long-sought goal in physics.

The Unexpected Electron Pairing

In this compound, known as neodymium cerium copper oxide, scientists noticed something unusual. When exposed to ultraviolet light, instead of losing a lot of energy as expected, the material retained more energy due to the electron pairs resisting disruption. This behavior was seen up to temperatures of 150 Kelvin, much higher than what is typically observed in such materials. Normally, these types of materials haven’t been studied much due to their low superconducting temperatures, but this new discovery is shifting perspectives.

Implications for Future Research

This electron pairing is a significant clue that could lead researchers closer to developing room-temperature superconductors, as per a research paper published in the journal Science. While the material studied doesn’t reach room temperature itself, the mechanisms behind this behavior could help in the search for materials that do. Understanding why these electrons are pairing at such high temperatures could unlock new methods for synchronizing these pairs, potentially enabling superconductivity at much higher temperatures.

The Role of Cooper Pairs

Known as Cooper pairs, the paired electrons in superconductors, follow unique quantum mechanical rules. Unlike single electrons, these pairs act like particles of light, allowing them to occupy the same space simultaneously. When enough Cooper pairs form, they create a superfluid that conducts electricity without resistance. This behavior is essential for superconductivity, and understanding how to encourage it at higher temperatures is crucial for future advancements.

Looking Ahead

The researchers plan to continue studying this phenomenon to uncover more about the pairing gap and explore ways to manipulate materials to achieve synchronised electron pairs, according to a statement made by co-author of the research paper, Ke-Jun Xu.

This discovery may not immediately yield a room-temperature superconductor, but it offers valuable insights that could guide future breakthroughs in the field. By focusing on these new findings, scientists hope to move closer to the dream of superconductors that work at room temperature, which would revolutionise technology and energy use.

Continue Reading

Science

NASA’s TRACERS Mission Rescheduled for 2025 to Explore Solar Wind and Earth’s Magnetic Field

Published

on

By

NASA's TRACERS Mission Rescheduled for 2025 to Explore Solar Wind and Earth's Magnetic Field

NASA has refocused its Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) launch date to no earlier than 2025 to provide more time for the mission crew to prepare. This mission is about a pair of satellite studying about how the solar wind, interacts with and enters Earth’s magnetosphere, the region around Earth dominated by our planet’s magnetic field. Understanding and eventually forecasting how energy from our Sun enters our planet and may affect assets depending on space and the earth depends on research into this interaction.

Mission Objectives

According to NASA, the TRACERS spacecraft will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The twin spacecraft will travel around 341 miles above the planet through polar cusps, a short area of the earth’s magnetic field where solar wind is concentrated and funneled into our atmosphere.

In order to investigate the location and frequency of a phenomena known as magnetic reconnection near the outer borders of Earth’s magnetic field, the TRACERS mission will fly across the northern polar cusp many times each day.

The explosive energy transfer where two magnetic fields meet, particularly in the magnetopause region where the solar wind meets Earth’s magnetosphere is termed as magnetic reconnection . This event can cause solar wind particles to enter the atmosphere at high speeds, igniting the northern and southern lights but also creating hazardous conditions for astronauts and satellites, damaging ground infrastructure, communication signals, and aviation.

Mission oversight

David Miles is leading this TRACERS mission at the University of Iowa and it is managed by the Southwest Research Institute in San Antonio. The Heliophysics Division at NASA Headquarters in Washington oversees the project through the Heliophysics Explorers Program Office at the agency’s Goddard Space Flight Center in Greenbelt, Maryland. As part of the agency’s VADR (Venture-class Acquisition of Dedicated and Rideshare) contract, the launch service is being provided by NASA’s Launch Services Program, which is headquartered at the agency’s Kennedy Space Center in Florida, in collaboration with NASA’s Science Mission Directorate.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s McClain, Ayers Wrap Up All-Female Spacewalk to Power Up ISS



Oppo Reno 14 With MediaTek Dimensity 8400 SoC Seen on Geekbench Ahead of Debut

Related Stories

Continue Reading

Science

NASA’s McClain and Ayers Finish Historic EVA, Advance ISS Solar Upgrade

Published

on

By

NASA’s McClain and Ayers Finish Historic EVA, Advance ISS Solar Upgrade

NASA astronauts Anne McClain and Nichole Ayers completed the fifth all-female spacewalk, moving an antenna and partially preparing the International Space Station for a new set of solar arrays on May 1st. Their 5-hour, 44-minute extravehicular activity was completed after re-entering the Quest airlock, and it started to get re-pressurised. McClain and Ayers completed the majority of their goals. However, they had to postpone some of the chores until a later spacewalk since they were behind schedule and had limited supplies.

About the mission

According to NASA, Expedition 73 crewmates Anne McClain and Nichole Ayers began working at 9:05 a.m. EDT (1305 GMT) by carrying tools and equipment out to the port (or left) side of the space station’s backbone truss. They began assembling the attachment hardware for the seventh pair of International Space Station Rollout Solar Arrays, or IROSA. These will be installed once they arrive on a SpaceX Dragon commercial resupply services mission later this year.

Installing smaller, more efficient solar arrays will increase electricity generation by up to 30%, increasing the station’s total power from 160 to 215 kilowatts. The spacewalkers constructed and installed the right struts and the upper triangle of the mast canister modification kit before being told to tidy up their workstations and proceed to the next, more important assignment.

Continuing the Legacy of Female Spacewalkers

It was Ayers’s first spacewalk and McClain’s third. McClain has spent 18 hours and 52 minutes away from the space station. Rotating astronaut crews have continuously staffed the ISS since November 2000. This was the 93rd EVA from the U.S. Quest airlock and the 275th overall to assist the ISS’s installation, maintenance, and upgrading.

In October 2019, NASA astronauts Christina Koch and Jessica Meir conducted the first all-female EVA. In January 2020, the pair performed two further spacewalks together. In November 2023, NASA’s Jasmin Moghbeli and Loral O’Hara completed a walk alone.

Continue Reading

Science

New Study Challenges Signs of Life on Exoplanet K2-18b

Published

on

By

New Study Challenges Signs of Life on Exoplanet K2-18b

Expectations were high at the start of this month when a group of University of Cambridge astronomers reported they had found the “strongest evidence yet” of life on an exoplanet called K2-18b. Their assertions sprang from the detection of dimethyl sulphide (DMS), a gas linked to biological activity in the atmosphere of Earth. Conducted using the James Webb Space Telescope (JWST), the finding suggested that the planet may be a watery, habitable world. But a detailed examination of the facts now begs grave doubt about the veracity of their bold assertions.

Skepticism Grows Over K2-18b Life Claims Amid New Analysis and Calls for More Data

As per a  study posted on April 22, Jake Taylor of the University of Oxford applied a neutral statistical test that detected no clear molecular signatures in the JWST data, just a flat line. The studies suggest the signal is either noisy or too weak to provide strong conclusions. The first Cambridge-led study revealed a three-sigma DMS detection much below the five-sigma threshold usually required to prove major scientific discoveries. Critics also questioned the absence of supporting compounds like ethane and claimed the models employed may have exaggerated DMS levels.

Astrobiologists Eddie Schwieterman and Michaela Musilova note that current evidence doesn’t meet strict criteria for proving life; thus, there is a need for multiple independent teams to analyse the same dataset.

Further complicating matters, new research indicates K2-18b may orbit too close to its star to retain liquid water, possibly excluding it from the habitable zone. Adding to the scepticism, DMS was recently detected on a cold comet, suggesting that such molecules can exist without life. Lead author of the original research, Madhusudhan, has supported the findings but discounted Taylor’s test as too simple and “irrelevant” for their assertions.

Most scientists agree that confirmation or denial of DMS existence in K2-18b’s atmosphere depends on additional solid, peer-reviewed research. The argument is still in progress, an ongoing narrative illustrating how science develops not by certainty but by questioning and correction.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


SpaceX Launches Falcon 9 Rocket With 28 Starlink Satellites Into Orbit From Florida



Oppo Reno 14 With MediaTek Dimensity 8400 SoC Seen on Geekbench Ahead of Debut

Related Stories

Continue Reading

Trending