Connect with us

Published

on

Recent research has pushed the timeline for the origin of all life on Earth back to 4.2 billion years ago. This last universal common ancestor (LUCA) predates previous estimates by about 300 million years. LUCA was a primordial cell, somewhat similar to modern bacteria, and existed during a time when Earth was still forming, characterized by intense heat and minimal atmospheric oxygen.

Uncovering LUCA’s Ancient Existence

The study, published in Nature Ecology & Evolution, involved Dr. Davide Pisani from the University of Bristol and Sandra Álvarez-Carretero from University College London. They utilized genomic analysis to refine LUCA’s age. By comparing genes from 700 species of bacteria and archaea, and examining ancient fossils such as 3.48-billion-year-old microbial mats from Australia, the researchers were able to make a more precise estimate. These ancient fossils provided crucial insights into early Earth’s conditions, helping to anchor LUCA’s age more accurately.

A Glimpse into LUCA’s Environment

LUCA lived during the Hadean eon (4.6 billion to 4 billion years ago), a period known for its harsh, inhospitable conditions. Earth’s oceans were extremely hot, and there was very little atmospheric oxygen. Despite these challenging conditions, LUCA managed to survive, likely in environments like shallow hydrothermal vents or hot springs. This ancient cell had adapted to high temperatures and was capable of living without oxygen, relying on the byproducts of other microorganisms in its ecosystem.

LUCA’s Advanced Features

Interestingly, LUCA already had a primitive immune system, indicating that even early life forms were battling viruses. This suggests that LUCA was not isolated but part of a complex, thriving ecosystem. The study also found that LUCA had genetic traits to defend against viruses, highlighting that the evolutionary arms race between life forms and viruses began much earlier than previously thought.

Implications for Life Beyond Earth

The study’s findings extend beyond the history of life on Earth. Dr. Philip Donoghue, a professor of paleobiology at the University of Bristol, pointed out that LUCA’s thriving ecosystem suggests that similar conditions could support life on other Earth-like planets. This revelation adds a new dimension to the search for extraterrestrial life, suggesting that if Earth-like biospheres exist elsewhere in the universe, they might also harbour life.

In summary, the discovery of LUCA’s age and characteristics not only reshapes our understanding of the early evolution of life but also opens new avenues for exploring the potential for life beyond our planet. The research underscores how interconnected life on Earth is and how ancient life forms were already adapting to their environments in complex ways.

Continue Reading

Science

This Is When Axiom-4 Mission Carrying Shubhashu Shukla Will Be Launched

Published

on

By

This Is When Axiom-4 Mission Carrying Shubhashu Shukla Will Be Launched

NASA, Axiom Space, and SpaceX are targeting no earlier than June 19 for the fourth private astronaut mission to the International Space Station. The Axiom Mission 4 launch was postponed from June 12 as the agency continued evaluating repairs made to a recent leak on the ISS. The small leaks, located in the Zvezda service module’s aft section, had been under observation for years. Now, following a recent repair, the pressure in the module’s transfer tunnel has remained stable, indicating either successful sealing of leaks or compensatory airflow from other station compartments.

NASA Targets June 19 for Axiom-4 Launch as ISS Pressure Holds and Falcon 9 Passes Final Tests

As per a NASA update, while the stable pressure offers promise, teams are still evaluating whether it reflects a successful seal or airflow leakage across the hatch from the main station. Monitoring pressure changes over time is expected to provide clearer insights. Adjustments in launch schedules are considered routine by NASA and its international partners, particularly when onboard station operations require urgent prioritisation.

Progress on the evaluation front has allowed the review of new launch windows. The earlier hold was further compounded by a liquid oxygen leak discovered during post-static fire inspections of the SpaceX Falcon 9 rocket. SpaceX successfully performed a wet dress rehearsal after repairs, validating that the rocket is good to go for launch from the Kennedy Space Centre‘s Launch Complex 39A.

The mission will be commanded by Peggy Whitson, an experienced NASA astronaut who is Axiom Space’s director of human spaceflight. India’s Shubhanshu Shukla of ISRO will pilot the mission. The mission specialists include Polish ESA astronaut Sławosz Uznański-Wiśniewski and Hungarian astronaut Tibor Kapu. The mission represents an extension of Axiom’s increasingly prominent position in commercial human spaceflight.

The new launch date for the Axiom-4 mission is currently targeted for June 19, 2025. SpaceX has verified that all of the technical issues that caused the first delay have been resolved. Further updates will be released as NASA and its partners finalise operational assessments, as shared by Union Minister Dr. Jitendra Singh in an official statement.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Apple to Release First Public Beta Update for AirPods 4 and AirPods Pro (2nd Generation) in July



ROG Xbox Ally Pre-Orders to Reportedly Begin in August; European Pricing Tipped

Continue Reading

Science

Earth’s Oceans Enter Danger Zone Due to Rising Acidification, New Study Warns

Published

on

By

Earth’s Oceans Enter Danger Zone Due to Rising Acidification, New Study Warns

The oceans of Earth are in worse condition than it was, thought, said the scientists. This is because of the increased acidity levels that led the sea to enter the danger zone five years ago. As per the new study, oceans are more acidic by releasing carbon dioxide from industrial activities such as fossil fuel burning. This acidification of the oceans damages marine life and the ecosystem, in turn threatening the coastal human communities that are dependent on healthy waters for their life.

Oceans May Have Crossed the Danger Zone in 2020

In the study published on Monday, June 9, 2025, in the journal Global Change Biology, researchers have found that acidification is highly advanced tha it was considered in the previous years. Our oceans might have entered the danger zone in the year 2020. Previous research suggested that the oceans of Earth were approaching a danger zone for ocean acidification.

How Ocean Acidification Happens

Ocean acidification is driven by the absorption of ocean of excess CO2 into the ocean, which is rapidly contributing to the global crisis. CO2 dissolves in seawater, forming carbonic acid, lowering pH levels and invading the vital carbonate ions. This threatens the species in the water, such as corals and shellfish, which depend on calcium carbonate to build their skeletons and shells.

The Planetary Boundary May Be Breached

Recent research depicts that the ocean acidification levels may now be breached, crossing the previous estimate of a 19% aragonite decline from the previous industrial levels. Scientists are alarmed that this change could destabilise the ecosystems of marine and, in turn, the coastal economies. This is a ticking bomb with socioeconomic and environmental consequences.

Global Consequences of Acidification

The recent findings suggest that scientists have feared in the past. Ocean acidification has reached dangerous levels, exceeding the limit that is needed to maintain a healthy and stable environment. As critical habitats degrade, the rippling effects are expected to cause harm to biodiversity, impact food security for many of the people who depend on the oceans for their livelihood.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy Tab S11 Spotted on Geekbench; Suggests SoC Details, Benchmark Scores



Vivo X200 FE Specifications Leaked, May Feature MediaTek Dimensity 9300+ Chipset

Continue Reading

Science

NASA Chandra Spots Distant X-Ray Jet; Telescope Faces Major Budget Cuts

Published

on

By

NASA Chandra Spots Distant X-Ray Jet; Telescope Faces Major Budget Cuts

NASA’s Chandra X-ray Observatory has detected an enormous X-ray jet from quasar J1610+1811, observed at a distance of about 11.6 billion light-years (roughly 3 billion years after the Big Bang). The jet spans over 300,000 light-years and carries particles moving at roughly 92–98% of the speed of light. It is visible in X-rays because high-energy electrons in the jet collide with the much denser cosmic microwave background at that epoch, boosting microwave photons into X-ray energies. These results were presented at the 246th AAS meeting and accepted for publication in The Astrophysical Journal.

Discovery of the Distant X-ray Jet

According to the study, Chandra’s high-resolution X-ray imaging, combined with radio data, allowed the team to isolate the jet at such a great distance. At the quasar’s distance (about 3 billion years after the Big Bang), the cosmic microwave background was much denser. As a result, relativistic electrons in the jet efficiently scatter CMB photons to X-ray energies. From the multiwavelength data the researchers infer that the jet’s particles are moving at roughly 0.92–0.98 c. Such near-light-speed outflows are among the fastest known.

These powerful jets carry enormous energy into intergalactic space and provide a unique probe of how black holes influenced their surroundings during the universe’s early “cosmic noon” era.

Chandra’s Future at Risk

However, the Chandra mission now faces possible defunding: NASA’s proposed budget calls for drastic cuts to its operating funds. For nearly 25 years, Chandra has been a cornerstone of X-ray astronomy, so its loss would constitute a major setback. The SaveChandra campaign warns that losing Chandra would be an “extinction-level event” for U.S. X-ray astronomy. Scientists warn that ending Chandra prematurely would cripple X-ray science.

Andrew Fabian commented Science magazine, “I’m horrified by the prospect of Chandra being shut down prematurely”. Elisa Costantini added in an interview with Science that if cuts proceed, “you will lose a whole generation ” and it will leave “a hole in our knowledge” of high-energy astrophysics. Without Chandra’s capabilities, many studies of the energetic universe would no longer be possible.

Continue Reading

Trending