Connect with us

Published

on

In recent years, advancements in genetic science have brought us startlingly close to the possibility of reviving extinct species such as the woolly mammoth. While this notion sparks the imagination, it also raises significant ethical, ecological, and technological concerns. In 2003, scientists achieved a fleeting success in “de-extinction” by cloning a Pyrenean ibex, a species that had gone extinct. Although the clone survived only briefly due to a lung defect, this event marked the beginning of serious scientific interest in bringing extinct species back to life. Today, the technology has evolved to a point where recreating species that disappeared long ago is becoming a realistic possibility.

The Role of Colossal Biosciences in De-Extinction

A leading player in this scientific endeavour is Colossal Biosciences, a Texas-based company that has set its sights on reviving several iconic species, including the woolly mammoth, the dodo, and the Tasmanian tiger. The company’s strategy involves integrating the genetic material of these extinct species into the genomes of their closest living relatives, with the goal of recreating animals that can play significant roles in their ecosystems.

Ben Lamm, co-founder and CEO of Colossal Biosciences, has indicated that the company could produce a mammoth-like calf as early as 2028. The process involves inserting genes associated with the woolly mammoth’s distinctive traits, such as its thick fur and large tusks, into the genome of the Asian elephant, a close relative. The resultant embryos would then be implanted into a surrogate elephant, or possibly an artificial womb, to grow the hybrid creature.

Ecological Considerations: Restoration or Risk?

The idea behind these de-extinction efforts is not merely to revive ancient species for their own sake but to restore lost ecological functions. For example, woolly mammoths once played a crucial role in maintaining the Arctic grasslands, which are now being lost to shrublands and forests. By reintroducing mammoths, scientists hope to recreate these ecosystems, which could help in carbon storage and combat climate change.

However, the potential risks are significant. Critics argue that ecosystems have adapted to the absence of these species, and reintroducing them could lead to unforeseen and possibly disastrous consequences. There are also concerns about the ethical implications of using endangered species like the Asian elephant as surrogates, which could further threaten their populations.
The Broader Implications and Ethical Debates

The broader implications of de-extinction go beyond the ecological. Some experts caution against the hubris of assuming humans can control such powerful technologies. The possibility of unforeseen consequences is real, and the creation of de-extinct animals could have impacts that we cannot fully predict or manage.

Moreover, the focus on de-extinction has drawn criticism from conservationists who argue that resources would be better spent on protecting the species that are currently endangered. The financial and scientific resources dedicated to reviving extinct species could potentially save hundreds of species that are on the brink of extinction today.

Conclusion: The Uncertain Future of De-Extinction

While the idea of seeing a woolly mammoth walk the Earth again is undoubtedly fascinating, it comes with a host of ethical, ecological, and technological challenges that society must carefully consider. The future of de-extinction is still uncertain, and the potential benefits of these scientific advances are still uncertain compared to the possible risks.

Colossal Biosciences and similar companies may be on the cusp of a groundbreaking achievement, but the full implications of bringing back extinct species are yet to be understood. Whether this scientific pursuit will contribute positively to biodiversity and ecosystem resilience or create new problems is a question that only time can answer.

Continue Reading

Science

How NASA Saved a Dying Camera Near Jupiter with Just Heat

Published

on

By

How NASA Saved a Dying Camera Near Jupiter with Just Heat

NASA’s Juno spacecraft, in orbit around Jupiter, had a huge problem when its JunoCam imager started to fail after sitting through the planet’s harsh radiation belts for so many orbits. Designed to only last through the initial few orbits, JunoCam astonishingly endured 34 orbits. Yet by the 47th orbit, the effects of radiation damage became visible, and by the 56th orbit, images were almost illegible. With few alternatives and time slipping away before a close flyby of Jupiter’s volcanic moon Io, engineers made a daring but creative gamble. Employing an annealing process, they sought to resuscitate the imager by warming it up—an experiment that proved successful.

Long-distance fix

According to NASA, JunoCam’s camera resides outside the spacecraft’s radiation-shielded interior and is extremely vulnerable. After several orbits, it started developing damage thought to be caused by a failing voltage regulator. From a distance of hundreds of millions of miles, the mission team implemented a last-ditch repair: annealing. The technique, which subjects materials to heat in order to heal microscopic defects, is poorly understood but has been succeeding in the lab. By heating the camera to 77°F, scientists wished to reorient its silicon-based parts.

At first, efforts were for naught, but only days before the December 2023 flyby of Io, the camera unexpectedly recovered—restoring close-to-original image quality just in time to photograph previously unseen volcanic landscapes.

Radiation Lessons for the Future

Though the camera showed renewed degradation during Juno’s 74th orbit, the successful restoration has led to broader applications. The team has since applied similar annealing strategies to other Juno instruments, helping them withstand harsh conditions longer. Juno’s findings are now informing spacecraft design across the board. “We’re learning how to build radiation-tolerant systems that benefit both defense and commercial satellites,” said Juno’s principal investigator Scott Bolton. These findings would inform future missions, such as those visiting outer planets or working in high-radiation environments near Earth, in the Van Allen belts. Juno’s mission continues to pay dividends with unexpected innovations—a lesson in how a small amount of heat can do wonders.

Continue Reading

Science

NASA’s X-59 Moves Closer to First Flight with Advanced Taxi Tests and Augmented Vision

Published

on

By

NASA’s X-59 Moves Closer to First Flight with Advanced Taxi Tests and Augmented Vision

X-59 of NASA has been designed from the ground to fly at a faster speed of sound without making thunderous sonic booms, which are usually associated with supersonic flight. This 99-foot aircraft, which features a logically elongated design, jettisons the front windscreen and is now heading towards the runway. Pilots can see what is at the front through an augmented reality (AR) enabled closed-circuit camera system, which is termed by NASA as the External Vision System (XVS). NASA took control of an experimental aircraft and performed taxi tests on it during this month.

X-59’s Futuristic Design: Eliminating Sonic Booms with External Vision System

According to As per NASA, the test pilot Nils Larson, during the test, drove the X-59 at the runway by keeping a low speed. This is done to ensure the working of the steering and braking systems of the jet. Lockheed Martina and NASA would perform the taxi tests at high speed, in which the X-59 will move faster to make it to the speed at which it will go for takeoff.

Taxi tests are held at the U.S. Air Force’s Plant 42 facility in Palmdale, California. The contractors and the Air Force utilise the plant for manufacturing and testing the aircraft. Lockheed Martin has developed this aircraft, whose Skunk Works is found in Plant 42.

Taxi Tests at Plant 42: NASA and Lockheed Martin Prepare X-59 for First Flight

Some advanced aircraft of the U.S. military were developed to a certain extent at Plant 42, together with the B-2 Spirit, the F-22 Raptor, and the uncrewed RQ-170 Sentinel spy drone.

SOFIA airborne observatory aircraft, which is a flying telescope called Plant 42, home recently retired. The space shuttle of the agency is the world’s first reusable spacecraft; these were assembled and tested at the facility.

Such taxi tests have started over the last months. NASA worked in collaboration with the Japan Aerospace Exploration Agency for testing a scale model of the X-59 in the supersonic wind tunnel to measure the noise created under the aircraft.

Continue Reading

Science

Unusual Plasma Waves Above Jupiter’s North Pole Can Possibly Be Explained

Published

on

By

Unusual Plasma Waves Above Jupiter’s North Pole Can Possibly Be Explained

In recent observations, NASA’s Juno spacecraft has significantly detected the presence of a variety of plasma waves. The emergence of these waves on Jupiter’s powerful magnetic field is projected to be surprising, as their existence was never marked in the planetary magnetospheres. However, scientists might have come out with an explanation. Furthermore, the current studies have been questioned by scientists surfacing the activity at the North Pole. The article below will exemplify the findings and shed light on the plasmas. 

Uncovering Mystery at Jupiter’s North Pole 

According to a paper published in the Physical Review Letters, the scientists have uncovered the explanation behind the presence of these strange waves. They mainly suspect that the formation of these waves lies behind their evolution as a plasma, which later transforms into something different. 

Inside Jupiter’s Plasmas and Their Variants 

Plasmas are best referred to as the waves that pass through the amalgamation of the charged particles in the planet’s magnetosphere.These plasma waves come across in two forms: One, Langmuir waves, which are high-pitched lights crafted with electrons, while the other, Alfven waves, are slower, formed by ions (heavy particles). 

About Juno’s Findings

As unveiled by the Juno, the findings turned out to be questionable after the scientists noted that in Jupiter’s far northern region, the plasma waves were relatively slower. The magnetic field is about 40 times stronger than the Earth’s, but scientists were shocked to witness the results as the waves were slower. To analyse this further, a team from the University of Minnesota, led by Robert Lysak, identified the possibility of Alfven waves transforming into Langmuir waves. Post studying the data extracted from the Juno, the researchers then began to compare the relationship between the plasma wave frequency and number. 

According to Lysak’s research team, near Jupiter’s north pole, there might be a potential pathway of Alfven waves, which are massive in numbers, transforming into Langmuir waves. Scientists are also predicting that the reason behind evolution might be strong electrons that are shooting upwards at a very high energy. This discovery was made in the year 2016. Considering the current findings, the researchers indicate that Jupiter’s magnetosphere may comprise a new type of plasma wave mode that occurs during high magnetic field strength. 

Continue Reading

Trending