Connect with us

Published

on

In recent years, advancements in genetic science have brought us startlingly close to the possibility of reviving extinct species such as the woolly mammoth. While this notion sparks the imagination, it also raises significant ethical, ecological, and technological concerns. In 2003, scientists achieved a fleeting success in “de-extinction” by cloning a Pyrenean ibex, a species that had gone extinct. Although the clone survived only briefly due to a lung defect, this event marked the beginning of serious scientific interest in bringing extinct species back to life. Today, the technology has evolved to a point where recreating species that disappeared long ago is becoming a realistic possibility.

The Role of Colossal Biosciences in De-Extinction

A leading player in this scientific endeavour is Colossal Biosciences, a Texas-based company that has set its sights on reviving several iconic species, including the woolly mammoth, the dodo, and the Tasmanian tiger. The company’s strategy involves integrating the genetic material of these extinct species into the genomes of their closest living relatives, with the goal of recreating animals that can play significant roles in their ecosystems.

Ben Lamm, co-founder and CEO of Colossal Biosciences, has indicated that the company could produce a mammoth-like calf as early as 2028. The process involves inserting genes associated with the woolly mammoth’s distinctive traits, such as its thick fur and large tusks, into the genome of the Asian elephant, a close relative. The resultant embryos would then be implanted into a surrogate elephant, or possibly an artificial womb, to grow the hybrid creature.

Ecological Considerations: Restoration or Risk?

The idea behind these de-extinction efforts is not merely to revive ancient species for their own sake but to restore lost ecological functions. For example, woolly mammoths once played a crucial role in maintaining the Arctic grasslands, which are now being lost to shrublands and forests. By reintroducing mammoths, scientists hope to recreate these ecosystems, which could help in carbon storage and combat climate change.

However, the potential risks are significant. Critics argue that ecosystems have adapted to the absence of these species, and reintroducing them could lead to unforeseen and possibly disastrous consequences. There are also concerns about the ethical implications of using endangered species like the Asian elephant as surrogates, which could further threaten their populations.
The Broader Implications and Ethical Debates

The broader implications of de-extinction go beyond the ecological. Some experts caution against the hubris of assuming humans can control such powerful technologies. The possibility of unforeseen consequences is real, and the creation of de-extinct animals could have impacts that we cannot fully predict or manage.

Moreover, the focus on de-extinction has drawn criticism from conservationists who argue that resources would be better spent on protecting the species that are currently endangered. The financial and scientific resources dedicated to reviving extinct species could potentially save hundreds of species that are on the brink of extinction today.

Conclusion: The Uncertain Future of De-Extinction

While the idea of seeing a woolly mammoth walk the Earth again is undoubtedly fascinating, it comes with a host of ethical, ecological, and technological challenges that society must carefully consider. The future of de-extinction is still uncertain, and the potential benefits of these scientific advances are still uncertain compared to the possible risks.

Colossal Biosciences and similar companies may be on the cusp of a groundbreaking achievement, but the full implications of bringing back extinct species are yet to be understood. Whether this scientific pursuit will contribute positively to biodiversity and ecosystem resilience or create new problems is a question that only time can answer.

Continue Reading

Science

Catch the Beaver Moon on Nov 15, 2024 – the year’s last supermoon!

Published

on

By

Catch the Beaver Moon on Nov 15, 2024 - the year's last supermoon!

The final supermoon of 2024, known as the Beaver Moon, will make its appearance on Friday, November 15. This full moon, which will reach its peak illumination at 4:29 PM EST, is anticipated by lunar enthusiasts as it marks the last supermoon event of the year. Visible as dawn approaches in Jakarta, this celestial event follows October’s Hunter’s Moon and concludes a sequence of four consecutive supermoons observed throughout 2024, according to NASA.

What is the Beaver Moon?

November’s full moon is traditionally called the Beaver Moon, a term that originates from Native American customs and was popularised by the Maine Farmer’s Almanac. This name is linked to the seasonal timing when beavers prepare their dens for winter or were historically hunted to ensure a supply of warm furs. In various regions, November’s full moon is also known as the Frost Moon or Snow Moon, reflecting the colder weather patterns typically seen in North America during this time.

When to See the Beaver Moon

The Beaver Moon will appear full to viewers for three days, from the early hours of 14 November to just before sunrise on November 17. This gives stargazers multiple opportunities to catch a glimpse of the bright, enlarged moon, which will be slightly closer to Earth than usual, enhancing its size and brightness compared to typical full moons. This phenomenon occurs when the moon reaches its closest orbital point, known as perigee, during a full phase, resulting in what is known as a supermoon.

Other Astronomical Highlights This Month

Apart from the Beaver Moon, November brings other notable astronomical events. On 16 November, Mercury will reach its greatest eastern elongation, making it ideal for evening observation. Additionally, the Leonid meteor shower is expected to peak from November 17 to 18, providing another highlight for skywatchers. Uranus will also be visible, reaching its closest point to Earth on November 17, according to Seasky.org, giving viewers a brighter and more accessible sighting.

For those interested in astronomy, November 15 offers a special chance to observe this year’s last supermoon before the seasonal Cold Moon arrives in December.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Kanguva OTT Release Date Reportedly Revealed: Here’s Everything You Need to Know



Vivo Y300 5G India Launch Date Announced; Rear Design, Colours Revealed

Continue Reading

Science

Scientists Discover New Electric Field in Earth’s Atmosphere

Published

on

By

Scientists Discover New Electric Field in Earth’s Atmosphere

A faint electric field has been detected in Earth’s atmosphere, confirming a theory that scientists have held for decades. This ambipolar electric field, though weak at just 0.55 volts, could play a vital role in shaping Earth’s atmospheric evolution and its ability to support life, according to recent findings. Glyn Collinson, an atmospheric scientist at NASA’s Goddard Space Flight Center, led the Endurance rocket mission, which successfully measured this field in May 2022 above Svalbard, Norway. Collinson has described this field as a “planetary-energy field” that had eluded scientific measurement until now.

How the Ambipolar Field Affects Earth’s Atmosphere

The presence of this field is thought to explain a phenomenon observed decades ago—the polar wind. When sunlight strikes atoms in the upper atmosphere, it can cause negatively charged electrons to break free and drift into space, while the heavier, positively charged oxygen ions remain. To maintain an electrically neutral atmosphere, a faint electric field forms, tying these particles together and preventing electrons from escaping. This weak field has been shown to provide energy to lighter ions, such as hydrogen, enabling them to break free from Earth’s gravity and contribute to the polar wind.

This ambipolar electric field could have implications for planetary habitability. David Brain, a planetary scientist at the University of Colorado Boulder, noted that understanding how such fields vary across planets could shed light on why Earth has remained habitable compared to planets like Mars and Venus. Although both Mars and Venus have electric fields, the absence of a global magnetic field on those planets allowed more of their atmospheres to escape into space, potentially altering their climates significantly.

Further Research Planned

NASA has recently approved a follow-up mission with a rocket named Resolute, expected to launch soon. Collinson believes that continued investigation into planetary electric fields may help answer fundamental questions about why Earth supports life while other planets do not.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Dying Light 2, Like a Dragon: Ishin!, GTA 5 and More Join PS Plus Game Catalog in November



The Rana Daggubati Show to Premiere on Prime Video on November 23

Continue Reading

Science

Amber Found in Antarctica for the First Time

Published

on

By

Amber Found in Antarctica for the First Time

The discovery of amber in Antarctica has been reported for the first time, as detailed in a recent study published in Antarctic Science. Dr. Johann Klages from the University of Bremen, alongside a team of researchers, uncovered this specimen in sediment cores from the Pine Island trough in West Antarctica. This ancient amber, originating from approximately 83 to 92 million years ago during the mid-Cretaceous period, offers valuable insights into prehistoric environmental conditions near the South Pole.

Unveiling the First Antarctic Amber

The study was published in Antarctic Science journal and reveals that the amber, known as Pine Island amber, was retrieved using the MARUM-MeBo70 drill rig during a 2017 expedition on the RV Polarstern vessel. This mid-Cretaceous resin is considered a significant breakthrough as it suggests that a swampy temperate rainforest, dominated by coniferous trees, thrived in the region during a much warmer period in Earth’s history. According to Dr. Henny Gerschel from the Saxon State Office for the Environment, Agriculture and Geology, the amber likely contains tiny fragments of tree bark, preserved through micro-inclusions. Its solid, translucent quality indicates that it was buried close to the surface, protecting it from thermal degradation.

Insights into Prehistoric Forest Ecosystems

The presence of pathological resin flow within the amber offers clues into the defence mechanisms used by ancient trees against environmental stressors like parasites or wildfires. “This discovery hints at a much richer forest ecosystem near the South Pole during the mid-Cretaceous,” Dr. Klages explained, noting the resin’s defensive chemical and physical properties that protected it from insect attacks and infections.

Reconstructing Ancient Antarctic Environments

The amber’s discovery marks a key step in reconstructing ancient polar climates, supporting the idea that temperate forests once spanned across all continents. Researchers aim to explore further by analysing whether signs of past life are preserved in the amber. This study, beyond unearthing Antarctic amber, opens new opportunities to deepen understanding of Earth’s climatic past and the adaptability of prehistoric ecosystems.

Continue Reading

Trending