Connect with us

Published

on

Glaciers have long served as nature’s deep freezers, preserving the physical characteristics of past climates and the genetic blueprints of ancient life forms, including viruses. As the planet’s climate continues to shift, scientists are increasingly looking to these frozen archives to understand how pathogens have historically responded to environmental changes. By studying viral genomes extracted from glacial ice, researchers from Ohio State University have uncovered how these ancient viruses adapted to Earth’s fluctuating climate over the past 41,000 years.

A Glimpse into Ancient Viral Communities

The team, composed of microbiologists and paleoclimatologists such as Lonnie Thompson, Virginia Rich, Matthew Sullivan, and Ellen Mosley-Thompson, focused their efforts on the Guliya Glacier located on the Tibetan Plateau. This glacier is an invaluable resource, containing layers of ice that have captured the genetic material of viruses from different periods in Earth’s history. The researchers drilled into the glacier, collecting ice cores that represent nine distinct time intervals spanning over 41,000 years. As highlighted in a study, published by The Conversation, by analysing the viral genomes within these samples, they were able to trace the evolution and adaptation of viral communities through three major cold-to-warm cycles.

Their analysis led to the recovery of 1,705 viral genomes, a discovery that significantly expands the known catalogue of ancient viruses preserved in glaciers. Remarkably, only about one-fourth of these viral species have any resemblance to the viruses previously identified in global metagenomic datasets. This suggests that many of the viruses found in the Guliya Glacier may have originated locally, highlighting the unique viral biodiversity of the region.

Viral Evolution and Climate Change

One of the study’s key findings was the significant variation in viral communities between cold and warm climatic periods. For instance, the viral community from around 11,500 years ago, which coincides with the transition from the Last Glacial Stage to the Holocene, was found to be distinct from other periods. This indicates that the shifts in climate played a crucial role in shaping viral communities. Changes in wind patterns, temperature fluctuations, and other environmental factors likely influenced which viruses were preserved and how they evolved over time.

To delve deeper into these interactions, the researchers used computer models to compare the viral genomes with those of other microbes present in the same environment. They discovered that many of these ancient viruses frequently infected Flavobacterium, a type of bacteria commonly found in glacial environments. The study also found that the viruses carried auxiliary metabolic genes, which they likely stole from their bacterial hosts. These genes, related to essential metabolic functions such as the synthesis and breakdown of vitamins and amino acids, may have helped the viruses survive in the extreme conditions of the glacier by enhancing the fitness of their hosts.

Implications for Understanding Climate Change

This research offers a unique perspective on how life has responded to climatic changes over tens of thousands of years. By studying these ancient viral communities, scientists gain valuable insights into how viruses might continue to evolve in response to ongoing global climate change. The findings also underscore the importance of glaciers as repositories of Earth’s climatic and biological history.

As glaciers continue to melt due to contemporary climate change, the preserved genetic material within them is at risk of being lost. This makes it all the more urgent to study these ancient records while they remain accessible. The work of Thompson, Rich, Sullivan, and Mosley-Thompson at Ohio State University highlights the critical role of glaciers in revealing the long-term interactions between climate and life on Earth.

Understanding how ancient viruses adapted to past climatic conditions can inform future research in both virology and climate science, offering a window into the potential challenges and changes that may arise as the planet’s climate continues to evolve.

Continue Reading

Science

Catch the Beaver Moon on Nov 15, 2024 – the year’s last supermoon!

Published

on

By

Catch the Beaver Moon on Nov 15, 2024 - the year's last supermoon!

The final supermoon of 2024, known as the Beaver Moon, will make its appearance on Friday, November 15. This full moon, which will reach its peak illumination at 4:29 PM EST, is anticipated by lunar enthusiasts as it marks the last supermoon event of the year. Visible as dawn approaches in Jakarta, this celestial event follows October’s Hunter’s Moon and concludes a sequence of four consecutive supermoons observed throughout 2024, according to NASA.

What is the Beaver Moon?

November’s full moon is traditionally called the Beaver Moon, a term that originates from Native American customs and was popularised by the Maine Farmer’s Almanac. This name is linked to the seasonal timing when beavers prepare their dens for winter or were historically hunted to ensure a supply of warm furs. In various regions, November’s full moon is also known as the Frost Moon or Snow Moon, reflecting the colder weather patterns typically seen in North America during this time.

When to See the Beaver Moon

The Beaver Moon will appear full to viewers for three days, from the early hours of 14 November to just before sunrise on November 17. This gives stargazers multiple opportunities to catch a glimpse of the bright, enlarged moon, which will be slightly closer to Earth than usual, enhancing its size and brightness compared to typical full moons. This phenomenon occurs when the moon reaches its closest orbital point, known as perigee, during a full phase, resulting in what is known as a supermoon.

Other Astronomical Highlights This Month

Apart from the Beaver Moon, November brings other notable astronomical events. On 16 November, Mercury will reach its greatest eastern elongation, making it ideal for evening observation. Additionally, the Leonid meteor shower is expected to peak from November 17 to 18, providing another highlight for skywatchers. Uranus will also be visible, reaching its closest point to Earth on November 17, according to Seasky.org, giving viewers a brighter and more accessible sighting.

For those interested in astronomy, November 15 offers a special chance to observe this year’s last supermoon before the seasonal Cold Moon arrives in December.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Kanguva OTT Release Date Reportedly Revealed: Here’s Everything You Need to Know



Vivo Y300 5G India Launch Date Announced; Rear Design, Colours Revealed

Continue Reading

Science

Scientists Discover New Electric Field in Earth’s Atmosphere

Published

on

By

Scientists Discover New Electric Field in Earth’s Atmosphere

A faint electric field has been detected in Earth’s atmosphere, confirming a theory that scientists have held for decades. This ambipolar electric field, though weak at just 0.55 volts, could play a vital role in shaping Earth’s atmospheric evolution and its ability to support life, according to recent findings. Glyn Collinson, an atmospheric scientist at NASA’s Goddard Space Flight Center, led the Endurance rocket mission, which successfully measured this field in May 2022 above Svalbard, Norway. Collinson has described this field as a “planetary-energy field” that had eluded scientific measurement until now.

How the Ambipolar Field Affects Earth’s Atmosphere

The presence of this field is thought to explain a phenomenon observed decades ago—the polar wind. When sunlight strikes atoms in the upper atmosphere, it can cause negatively charged electrons to break free and drift into space, while the heavier, positively charged oxygen ions remain. To maintain an electrically neutral atmosphere, a faint electric field forms, tying these particles together and preventing electrons from escaping. This weak field has been shown to provide energy to lighter ions, such as hydrogen, enabling them to break free from Earth’s gravity and contribute to the polar wind.

This ambipolar electric field could have implications for planetary habitability. David Brain, a planetary scientist at the University of Colorado Boulder, noted that understanding how such fields vary across planets could shed light on why Earth has remained habitable compared to planets like Mars and Venus. Although both Mars and Venus have electric fields, the absence of a global magnetic field on those planets allowed more of their atmospheres to escape into space, potentially altering their climates significantly.

Further Research Planned

NASA has recently approved a follow-up mission with a rocket named Resolute, expected to launch soon. Collinson believes that continued investigation into planetary electric fields may help answer fundamental questions about why Earth supports life while other planets do not.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Dying Light 2, Like a Dragon: Ishin!, GTA 5 and More Join PS Plus Game Catalog in November



The Rana Daggubati Show to Premiere on Prime Video on November 23

Continue Reading

Science

Amber Found in Antarctica for the First Time

Published

on

By

Amber Found in Antarctica for the First Time

The discovery of amber in Antarctica has been reported for the first time, as detailed in a recent study published in Antarctic Science. Dr. Johann Klages from the University of Bremen, alongside a team of researchers, uncovered this specimen in sediment cores from the Pine Island trough in West Antarctica. This ancient amber, originating from approximately 83 to 92 million years ago during the mid-Cretaceous period, offers valuable insights into prehistoric environmental conditions near the South Pole.

Unveiling the First Antarctic Amber

The study was published in Antarctic Science journal and reveals that the amber, known as Pine Island amber, was retrieved using the MARUM-MeBo70 drill rig during a 2017 expedition on the RV Polarstern vessel. This mid-Cretaceous resin is considered a significant breakthrough as it suggests that a swampy temperate rainforest, dominated by coniferous trees, thrived in the region during a much warmer period in Earth’s history. According to Dr. Henny Gerschel from the Saxon State Office for the Environment, Agriculture and Geology, the amber likely contains tiny fragments of tree bark, preserved through micro-inclusions. Its solid, translucent quality indicates that it was buried close to the surface, protecting it from thermal degradation.

Insights into Prehistoric Forest Ecosystems

The presence of pathological resin flow within the amber offers clues into the defence mechanisms used by ancient trees against environmental stressors like parasites or wildfires. “This discovery hints at a much richer forest ecosystem near the South Pole during the mid-Cretaceous,” Dr. Klages explained, noting the resin’s defensive chemical and physical properties that protected it from insect attacks and infections.

Reconstructing Ancient Antarctic Environments

The amber’s discovery marks a key step in reconstructing ancient polar climates, supporting the idea that temperate forests once spanned across all continents. Researchers aim to explore further by analysing whether signs of past life are preserved in the amber. This study, beyond unearthing Antarctic amber, opens new opportunities to deepen understanding of Earth’s climatic past and the adaptability of prehistoric ecosystems.

Continue Reading

Trending