Connect with us

Published

on

Glaciers have long served as nature’s deep freezers, preserving the physical characteristics of past climates and the genetic blueprints of ancient life forms, including viruses. As the planet’s climate continues to shift, scientists are increasingly looking to these frozen archives to understand how pathogens have historically responded to environmental changes. By studying viral genomes extracted from glacial ice, researchers from Ohio State University have uncovered how these ancient viruses adapted to Earth’s fluctuating climate over the past 41,000 years.

A Glimpse into Ancient Viral Communities

The team, composed of microbiologists and paleoclimatologists such as Lonnie Thompson, Virginia Rich, Matthew Sullivan, and Ellen Mosley-Thompson, focused their efforts on the Guliya Glacier located on the Tibetan Plateau. This glacier is an invaluable resource, containing layers of ice that have captured the genetic material of viruses from different periods in Earth’s history. The researchers drilled into the glacier, collecting ice cores that represent nine distinct time intervals spanning over 41,000 years. As highlighted in a study, published by The Conversation, by analysing the viral genomes within these samples, they were able to trace the evolution and adaptation of viral communities through three major cold-to-warm cycles.

Their analysis led to the recovery of 1,705 viral genomes, a discovery that significantly expands the known catalogue of ancient viruses preserved in glaciers. Remarkably, only about one-fourth of these viral species have any resemblance to the viruses previously identified in global metagenomic datasets. This suggests that many of the viruses found in the Guliya Glacier may have originated locally, highlighting the unique viral biodiversity of the region.

Viral Evolution and Climate Change

One of the study’s key findings was the significant variation in viral communities between cold and warm climatic periods. For instance, the viral community from around 11,500 years ago, which coincides with the transition from the Last Glacial Stage to the Holocene, was found to be distinct from other periods. This indicates that the shifts in climate played a crucial role in shaping viral communities. Changes in wind patterns, temperature fluctuations, and other environmental factors likely influenced which viruses were preserved and how they evolved over time.

To delve deeper into these interactions, the researchers used computer models to compare the viral genomes with those of other microbes present in the same environment. They discovered that many of these ancient viruses frequently infected Flavobacterium, a type of bacteria commonly found in glacial environments. The study also found that the viruses carried auxiliary metabolic genes, which they likely stole from their bacterial hosts. These genes, related to essential metabolic functions such as the synthesis and breakdown of vitamins and amino acids, may have helped the viruses survive in the extreme conditions of the glacier by enhancing the fitness of their hosts.

Implications for Understanding Climate Change

This research offers a unique perspective on how life has responded to climatic changes over tens of thousands of years. By studying these ancient viral communities, scientists gain valuable insights into how viruses might continue to evolve in response to ongoing global climate change. The findings also underscore the importance of glaciers as repositories of Earth’s climatic and biological history.

As glaciers continue to melt due to contemporary climate change, the preserved genetic material within them is at risk of being lost. This makes it all the more urgent to study these ancient records while they remain accessible. The work of Thompson, Rich, Sullivan, and Mosley-Thompson at Ohio State University highlights the critical role of glaciers in revealing the long-term interactions between climate and life on Earth.

Understanding how ancient viruses adapted to past climatic conditions can inform future research in both virology and climate science, offering a window into the potential challenges and changes that may arise as the planet’s climate continues to evolve.

Continue Reading

Science

NASA Scientists Study Crystal Formation in Space For Future Applications

Published

on

By

NASA Scientists Study Crystal Formation in Space For Future Applications

NASA scientists have been studying crystals to optimise the process of crystallisation for decades. Various researchers have conducted research on crystals within the first quarter of the year, the latest being protein crystallisation in microgravity. Alexandra Ros from Arizona State University led the research by launching a protein crystallisation test in the International Space Station (ISS). The experiments are meant to determine the growth of protein crystals in space using newly developed microfluid devices. The research agenda is to examine whether space-grown crystals can achieve better quality than those formed on Earth.

What is Crystallisation, & How Does It Impact Our Lives?

It is the process of freezing of liquid or molten materials in the form of highly organised molecules called crystals. These crystals can be a blend of different types of materials. This world consists of crystal examples everywhere. It would be wrong to say that we don’t live in a world of crystals.

Be it a coffee mug, cellphone or silicon that is used to form the brains of electronics and used in memory chips, everything is a result of crystallisation. Other types of semiconductor crystals are used as detectors for different radiations, such as gamma rays, infrared rays, etc. Lasers used in scanning the product are made of optical crystals. Turbine blades are an example of metal crystals used in the jet engine.

Why and How NASA Studies Crystals?

The scientists studied the growth of zinc selenide crystals in space, with the crystals on Earth, explained NASA. The result from the observations marked the way for the improvement of the operations of infrared wavelength in the high powered lasers. The research findings provide an insight into the strong influence of gravity on the electrical, optical and structural characteristics of the crystals.

Researchers have optimised the crystal usage for several years to study the types of crystals for growing in space.

The crystals grown on Earth have defects such as little cracks; these cracks can damage the properties of the crystals. This marks a strong reason why scientists want to study crystals in space, thus getting a complete microgravitational environment where they can grow better. Convection produced due to the presence of the gravitational force degrades the quality of crystals.

However, this convection is not seen in the environment of microgravity, helping in the better quality crystals. The ISS is now converted to a complete lab for the study of the formation of crystals, which can be further applied in technology and medicine.

Continue Reading

Science

Missing Non-Dark Matter Might Be Hidden Within Hydrogen Gas Clouds

Published

on

By

Missing Non-Dark Matter Might Be Hidden Within Hydrogen Gas Clouds

It is observed that about half of the matter cannot be occupied just by stars and galaxies. Scientists say that hydrogen gas clouds could unveil it. Missing matter of the universe may have finally been detected. It is reported by the astronomers that the stuff revealed and not dark matter accounts for only 15 percent of the total mass of the universe. For years, scientists have rushed into a problem, and they have not been able to find even about half of the normal matter in the galaxies, stars, and other space structures that can be seen.

Research and Discovery

At present, a large international team of researchers led by Simone Ferraro from the University of California, Berkeley, concluded that the hydrogen gas cloud that surrounds most galaxies is more extensive than previously realised by scientists. The extensiveness is so high that it could even be responsible for most of the universe’s missing matter, according to the study, which is published in the online pre-print journal arXiv.

The hunt for the Missing Matter

The researchers used data from the Dark Energy Spectroscopic Instrument (DESI) for the investigation. With this instrument, the team piled images of approx. 7 million galaxies for measuring the mild halos of ionised hydrogen gas at the edges of the galaxies, which cannot be observed by normal methods. So the team analysed the remaining radiation from the Big Bang that is widespread throughout the cosmos. If these faint halos connect the other galaxies, there will be a cosmic web spanning far and will account for the undetected matter in the past.

Black Holes on Duty

This discovery may also change the perspective on the black hole behaviour. Scientists at first thought that blackholes forced out a high volume of gases early in their life cycle. At present, the study says that these black holes are much more frequent in action than earlier thought. Boryana Hadzhiyska, an astronomer, said in the statement that one of the hypothetical theories is that the black holes switch on and off in their duty cycle.

Future Scope

The next step is to use new measurements in existing universe models. Hadzhiyska said, there are many people interested in using our measurements for doing a thorough analysis, including this missed gas.

Continue Reading

Science

Researchers Find Microplastics in Caddisfly Casings From the 1970s

Published

on

By

Researchers Find Microplastics in Caddisfly Casings From the 1970s

An expert team of biologists practising at the Naturalis Biodiversity Centre, a research museum in the Netherlands, has recently discovered evidence of the incorporation of microplastics into caddisfly casings. However, what’s even more interesting is that the use of these microplastics for building the casings has been progressing from as far back as the 1970s. This breaks the traditional understanding of how far back the impact of microplastics goes. If the research is to be believed, microplastics began damaging the environment half a century ago.

What is a Caddisfly?

As per a study published in the journal Science of the Total Environment, this team of biologists exemplified the discovery of microplastics in larval casings at the museum. A caddisfly is a moth-like insect that is found near freshwater habitats like lakes and streams. These are found in most countries across the world. Caddisflies make their home near freshwater streams and deposit their eggs in the form of jelly. Once the larva hatches, cladissfly begin to incorporate materials from their surroundings to protect themselves from predators.

How was the Discovery made?

The discovery commenced when something colourful was witnessed on one larva casing by one of the team members of the biologists. Further investigation confirmed that the colourful component on the larva was microplastic. With this discovery, the biologists decided to observe the other 549 casings from their collection over several decades. As a result of their study, many casings were found to have microplastics on them.

To elaborate further, one of the casings from the year 1986 had multiple blue colored microplastics. Likewise, another casing, dated back to 1971, possessed yellow plastic.

The Researcher’s Perspective

Post-discovering microplastics on cladissfly casing, the researchers suggest that the contamination of the environment has been going on for at least half a century. Significantly, they have proposed the possibility of other species being impacted by the same.

The microplastics present on the casings are compromising the safety of claddisflies as they increase visibility, which raises the chances of getting noticed by the predators. Natural materials used in building casing are being dominated by these microplastics. These factors are putting these creatures at great risk of being found and eaten by fish and birds.

Continue Reading

Trending