Connect with us

Published

on

On September 8, the European Space Agency (ESA) will witness a rare event as the first of four Cluster satellites, named “Salsa”, re-enters Earth’s atmosphere. This satellite, launched as part of ESA’s Cluster mission, will burn up in an uncontrolled yet targeted reentry over a remote part of the South Pacific Ocean. The event presents a unique opportunity for scientists to observe and gather critical data on satellite reentry, contributing to safer and more sustainable practices in future space missions.

Understanding Satellite Reentry

According to a report by ESA, in nearly 70 years of space exploration, about 10,000 intact satellites and rocket bodies have reentered Earth’s atmosphere. Despite this, scientists still have limited understanding of the exact dynamics that occur during reentry. To bridge this knowledge gap, ESA, in collaboration with Astros Solutions, will conduct an airborne observation experiment during Salsa’s reentry.

A team of scientists aboard a small plane will attempt to collect data on the satellite’s breakup process, which will be invaluable for designing and operating future satellites to ensure they can be safely and efficiently disposed of after their missions.

The Importance of Salsa’s Reentry

According to Holger Krag, Head of Space Safety at ESA, understanding reentry dynamics is crucial for maintaining clean and safe orbital paths around Earth. He explains that the quick removal of defunct satellites is vital to prevent space debris accumulation. The reentry of the Cluster satellites, starting with Salsa, offers a repeatable experiment due to the nearly identical conditions under which each satellite will reenter the atmosphere. This scenario allows scientists to observe and compare the outcomes of different reentry angles and conditions, providing insights that will inform the design of future missions.

Targeting the South Pacific Ocean

In January, Salsa’s orbit was adjusted to ensure that its reentry would occur over one of the most remote regions on Earth, the South Pacific Ocean. Bruno Sousa, Cluster Operations Manager, notes that Salsa’s orbit brings it close to Earth every 12 years. This year’s close approach allowed for a targeted reentry, with the spacecraft’s trajectory adjusted to ensure that any surviving fragments fall into open waters, minimizing the risk to populated areas.

Preparing for the Airborne Observation

The airborne observation mission, known as ROSIE-Salsa, involves a joint effort from academic institutions such as the University of Stuttgart and the University of Southern Queensland, alongside industrial partners like Hypersonic Technology Göttingen and Astros Solutions. Led by Jiří Silha, CEO of Astros Solutions, the mission aims to capture real-time data during Salsa’s reentry.

The plane will be equipped with over 20 scientific instruments, including cameras and spectrographs, to observe the satellite’s breakup and record detailed information. Despite the challenges posed by the reentry’s unpredictable nature and the remote location, the team is prepared to gather critical data that could enhance future satellite reentry predictions.

Looking Ahead

Salsa’s reentry marks the beginning of a series of controlled reentries for the remaining Cluster satellites, with the last one scheduled for 2026. ESA’s commitment to reducing space debris is further demonstrated by its Zero Debris approach, which aims to eliminate the creation of space debris by 2030.

In addition to the Cluster mission, ESA is also planning the DRACO mission, which will involve an actively controlled reentry of a satellite equipped with a “black box” to provide telemetry data from within. If successful, this mission could set a new standard for satellite reentry observations and contribute significantly to the safe and sustainable use of space.

Continue Reading

Science

SpaceX Successfully Deploys 21 Starlink Satellites, Loses Falcon 9 Booster

Published

on

By

SpaceX Successfully Deploys 21 Starlink Satellites, Loses Falcon 9 Booster

A Falcon 9 rocket carrying 21 Starlink satellites was launched by SpaceX from Cape Canaveral Space Force Station on March 2. Liftoff took place at 9:24 p.m. ET on March 3, with the mission including 13 satellites equipped with direct-to-cell capabilities. The first stage of the rocket successfully landed on the droneship “Just Read the Instructions” stationed approximately 400 kilometres off Florida’s coast. However, the booster, designated B1086, was lost shortly after landing due to damage sustained by one of its landing legs.

Booster Loss After Landing

According to SpaceX, a fire at the aft end of the booster resulted in structural damage, leading to its collapse. The incident occurred after the rocket had completed its return to Earth and made contact with the landing platform. Data from this failure will be examined to improve the reliability of future Falcon 9 missions, as stated in SpaceX’s official mission description.

Mission Details and Starlink Expansion

The deployment of the 21 satellites took place approximately 65 minutes after launch, marking another step in the expansion of SpaceX’s Starlink constellation. More than 7,000 operational Starlink satellites are currently in orbit, contributing to global broadband coverage.

This launch marked the Falcon 9 booster’s fifth and final flight. The B1086 had previously been used for three Starlink missions, as well as the GOES-U and Maxar 3 missions. SpaceX has completed 26 Falcon 9 missions in 2025, with 19 dedicated to Starlink. The company continues to advance its satellite network despite the loss of the booster in this mission.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.

Continue Reading

Science

Primordial Helium-3 May Be Locked in Earth’s Core, Study Finds

Published

on

By

Primordial Helium-3 May Be Locked in Earth’s Core, Study Finds

Helium-3, a rare isotope formed during the early solar system, may be locked within Earth’s solid core, as indicated by recent research. This discovery could provide insights into how quickly the planet was formed. Unlike helium-4, which is commonly produced through radioactive decay, helium-3 originates from the primordial gas cloud that shaped the solar system. While traces of this isotope have been detected in volcanic hotspots and mid-ocean ridges, the mechanism behind its retention for billions of years remains uncertain. Given helium’s volatile nature, most of it was expected to escape Earth’s mantle due to tectonic activity or the giant impact that led to the formation of the Moon.

Helium and Iron Interaction at Core Conditions

According to the study published in Physical Review Letters, researchers at the University of Tokyo led by Kei Hirose examined whether helium could mix with iron under conditions mimicking Earth’s core. Using a diamond-tipped anvil, the team subjected iron and helium to extreme pressures ranging from 50,000 to 550,000 times the atmospheric pressure at Earth’s surface. As per reports, the samples were heated to temperatures between 727 and 2,727 degrees Celsius before being depressurised and analysed at cryogenic temperatures to prevent helium escape. Findings indicated that solid iron could incorporate up to 3.3 percent helium, suggesting the isotope may remain trapped in the core over long periods.

Potential Impact on Earth’s Formation Timeline

Peter Olson, a geophysicist at the University of New Mexico, told that these results confirm helium’s compatibility with Earth’s solid core. However, he noted that only 4 percent of the core is solid, with the majority existing in a liquid state. Further research is needed to determine whether helium-3 could be similarly retained in the liquid portion. Olson also highlighted the significance of this discovery in dating Earth’s formation. If helium-3 was incorporated into the core, it suggests the planet formed rapidly within a few million years. A slower formation process spanning 100 million years would likely have resulted in minimal helium retention.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


SpaceX Delays Starship Flight 8 Launch After Technical Glitches



Google Pixel 9a Surfaces on US FCC Website With Support for Satellite Connectivity

Continue Reading

Science

SpaceX Delays Starship Flight 8 Launch After Technical Glitches

Published

on

By

SpaceX Delays Starship Flight 8 Launch After Technical Glitches

The scheduled test flight of SpaceX’s Starship Flight 8, which was expected to take off from the company’s Starbase facility in Texas on March 3, has been postponed due to last-minute technical issues. The launch was planned within a window starting at 6:30 p.m. ET with a mission to test various aspects of the rocket’s performance, including booster recovery and satellite deployment. SpaceX has not yet announced a new launch date, but updates are expected soon. The flight was set to be the eighth major test for Starship, which is designed to be the most powerful rocket ever built.

Starship’s Mission and Test Objectives

As per reports, the flight plan, Starship was expected to launch atop its Super Heavy booster, which was intended to return to the launch pad and be caught by the “chopstick” arms of the tower. The upper stage of the rocket was set to release four mock versions of SpaceX’s Starlink satellites on a suborbital trajectory before splashing down in the Indian Ocean approximately 66 minutes after liftoff. A similar test conducted on January 16 with Flight 7 saw the successful recovery of the booster, but the upper stage failed due to a propellant leak, leading to an explosion before it could complete its mission.

NASA’s Interest and Future Developments

NASA has selected Starship as the lunar lander for the Artemis program, which aims to return astronauts to the Moon in the coming years. The vehicle is also being developed for deep-space missions, including potential crewed journeys to Mars. Elon Musk, CEO of SpaceX, has indicated that future iterations of Starship may be even larger than the current model, which stands at 123 metres. The Federal Aviation Administration (FAA) is expected to grant approval for up to 25 Starship launches in 2025, marking a significant step toward the rocket’s operational use.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.


Jio Platforms, AMD, Cisco and Nokia Announce Open Telecom AI Platform at MWC 2025



Google Pixel 9a Surfaces on US FCC Website With Support for Satellite Connectivity

Related Stories

Continue Reading

Trending