Connect with us

Published

on

On September 8, the European Space Agency (ESA) will witness a rare event as the first of four Cluster satellites, named “Salsa”, re-enters Earth’s atmosphere. This satellite, launched as part of ESA’s Cluster mission, will burn up in an uncontrolled yet targeted reentry over a remote part of the South Pacific Ocean. The event presents a unique opportunity for scientists to observe and gather critical data on satellite reentry, contributing to safer and more sustainable practices in future space missions.

Understanding Satellite Reentry

According to a report by ESA, in nearly 70 years of space exploration, about 10,000 intact satellites and rocket bodies have reentered Earth’s atmosphere. Despite this, scientists still have limited understanding of the exact dynamics that occur during reentry. To bridge this knowledge gap, ESA, in collaboration with Astros Solutions, will conduct an airborne observation experiment during Salsa’s reentry.

A team of scientists aboard a small plane will attempt to collect data on the satellite’s breakup process, which will be invaluable for designing and operating future satellites to ensure they can be safely and efficiently disposed of after their missions.

The Importance of Salsa’s Reentry

According to Holger Krag, Head of Space Safety at ESA, understanding reentry dynamics is crucial for maintaining clean and safe orbital paths around Earth. He explains that the quick removal of defunct satellites is vital to prevent space debris accumulation. The reentry of the Cluster satellites, starting with Salsa, offers a repeatable experiment due to the nearly identical conditions under which each satellite will reenter the atmosphere. This scenario allows scientists to observe and compare the outcomes of different reentry angles and conditions, providing insights that will inform the design of future missions.

Targeting the South Pacific Ocean

In January, Salsa’s orbit was adjusted to ensure that its reentry would occur over one of the most remote regions on Earth, the South Pacific Ocean. Bruno Sousa, Cluster Operations Manager, notes that Salsa’s orbit brings it close to Earth every 12 years. This year’s close approach allowed for a targeted reentry, with the spacecraft’s trajectory adjusted to ensure that any surviving fragments fall into open waters, minimizing the risk to populated areas.

Preparing for the Airborne Observation

The airborne observation mission, known as ROSIE-Salsa, involves a joint effort from academic institutions such as the University of Stuttgart and the University of Southern Queensland, alongside industrial partners like Hypersonic Technology Göttingen and Astros Solutions. Led by Jiří Silha, CEO of Astros Solutions, the mission aims to capture real-time data during Salsa’s reentry.

The plane will be equipped with over 20 scientific instruments, including cameras and spectrographs, to observe the satellite’s breakup and record detailed information. Despite the challenges posed by the reentry’s unpredictable nature and the remote location, the team is prepared to gather critical data that could enhance future satellite reentry predictions.

Looking Ahead

Salsa’s reentry marks the beginning of a series of controlled reentries for the remaining Cluster satellites, with the last one scheduled for 2026. ESA’s commitment to reducing space debris is further demonstrated by its Zero Debris approach, which aims to eliminate the creation of space debris by 2030.

In addition to the Cluster mission, ESA is also planning the DRACO mission, which will involve an actively controlled reentry of a satellite equipped with a “black box” to provide telemetry data from within. If successful, this mission could set a new standard for satellite reentry observations and contribute significantly to the safe and sustainable use of space.

Continue Reading

Science

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Published

on

By

Smithsonian Air and Space Museum Reopens with SpaceX Rocket, Mars Habitat and More

Hundreds waited at the ready outside the Smithsonian’s National Air and Space Museum on Monday (July 28), when “the doors opened for access to five featured and newly renovated galleries that capture the history, contemporary status, and futuristic vision of aviation and space exploration. These refurbished spaces showcase a mix of historic and high-tech artifacts such as John Glenn’s “Friendship 7” capsule, pieces of a SpaceX Falcon 9 rocket, and a 3D-printed Mars habitat. Visitors were among the first to experience a sweeping display of innovation, housed within the museum’s revitalised main building on the National Mall in Washington, D.C.

Smithsonian’s $900M Overhaul Brings Futuristic Space Exhibits and Aviation History to Life

As per a Smithsonian statement, the reimagined exhibits are part of a $900 million full-building transformation launched in 2018, scheduled for completion by July 2026—the museum’s 50th anniversary. This phase marks the second group of reopened galleries since the start of 2022. After a three-year closure, the north entrance opened for the first time, leading visitors through a newly wing-shaped vestibule and into “Boeing Milestones of Flight Hall”, now with improved lighting, digital screens, and iconic artefacts.

Next to it, a new “Futures in Space” gallery showcases domestic exhibitions from private space companies like SpaceX, Blue Origin, Virgin Galactic, and Axiom Space. Rather than a chronological or program-based layout, the gallery explores philosophical and practical questions about space: Who decides who goes? Why do we venture out? What will we do once we arrive? The immersive layout blends historical items, contemporary designs, and even pop culture references.

The museum has reopened galleries such as “Barron Hilton Pioneers of Flight”, “World War I: The Birth of Military Aviation”, and “Allan and Shelley Holt Innovations Gallery”, and the upgraded Lockheed Martin IMAX Theatre, praised as educational and inspirational.

Despite free entry, the Smithsonian Museum reopened to more than 6,000 guests, who must pick up timed-entry passes in order to better manage crowd flow.

Continue Reading

Science

NASA’s Solar Observatory Sees Two Eclipses in One Day

Published

on

By

NASA’s Solar Observatory Sees Two Eclipses in One Day

NASA’s Solar Dynamics Observatory (SDO) has witnessed and recorded an unprecedented phenomenon of two solar eclipses in one day on July 25, 2025. These two eclipses took place only hours apart that day, and were photographed by SDO instruments pointed up and away from the Sun in geosynchronous orbit. First, around 2:45 UTC, the Moon passed between SDO and the Sun. Then, starting at about 6:30 UTC, Earth itself eclipsed the Sun from SDO’s point of view, with the Sun disappearing behind our planet shortly before 8:00 UTC. Since launching in 2010, SDO has continuously monitored the Sun’s activity, from solar flares to magnetic fields, helping forecasters predict space weather.

Moon Transit

According to NASA, SDO orbits Earth in a high geosynchronous orbit, so it has an almost constant view of the Sun. On July 25, this vantage point captured a partial solar eclipse as the Moon passed between the spacecraft and the Sun. NASA’s mission team had predicted this “lunar transit” would cover about 62% of the solar disk. Indeed, the Moon’s silhouette moved slowly across the Sun (around 2:45–3:35 UTC), blocking roughly two-thirds of the bright disk at maximum. The observatory’s ultraviolet telescope (AIA) recorded the event, revealing the Sun’s lower atmosphere and coronal loops around the sharply defined lunar edge. This transit was the deepest lunar eclipse SDO saw in 2025.

Earth’s Eclipse from Space

Hours later, on the same day, Earth itself passed between SDO and the Sun. Beginning around 6:30 UTC on July 25, our planet fully blocked the observatory’s view of the solar disk. This occurred during SDO’s regular eclipse season (a roughly three-week period twice each year when Earth’s orbit crosses the satellite’s line of sight). The total eclipse lasted until shortly before 8:00 UTC. In SDO’s images, Earth’s shadow has a fuzzy edge because our atmosphere scatters sunlight, in contrast to the Moon’s crisp eclipse.

Continue Reading

Science

NISAR Launches July 30: A NASA-ISRO Satellite to Track Earth’s Changes

Published

on

By

NISAR Launches July 30: A NASA-ISRO Satellite to Track Earth’s Changes

The NASA-ISRO Synthetic Aperture Radar (NISAR) satellite, a joint Earth science mission, is now set for launch from India’s Satish Dhawan Space Centre. The pickup-truck-sized spacecraft was encapsulated in the nose cone of an Indian Geosynchronous Satellite Launch Vehicle and is scheduled to lift off on Wednesday, July 30 at 8:10 a.m. EDT (5:40 p.m. IST). Once in orbit, its dual-frequency radars will circle Earth 14 times a day, scanning nearly all of the planet’s land and ice surfaces every 12 days. It will provide data to help scientists monitor soil moisture and vegetation, and better assess hazards like landslides and floods.

International Collaboration and Launch Readiness

According to the official website, NISAR reflects a significant NASA–ISRO partnership. NASA’s Jet Propulsion Laboratory (JPL) built the long-wavelength L-band radar, and India’s Space Applications Centre built the shorter-wavelength S-band radar. This dual-frequency design makes NISAR the first Earth satellite to carry two radar systems, underscoring the mission’s unique collaboration.

The spacecraft is now integrated into its launch vehicle at India’s Satish Dhawan Space Centre. On July 28 NASA announced NISAR had been encapsulated in the payload fairing of an ISRO Geosynchronous Satellite Launch Vehicle on the pad. The GSLV is scheduled to lift off at 8:10 a.m. EDT (5:40 p.m. IST) on Wednesday, July 30.

Advanced Dual-Frequency Radar

NISAR carries a novel dual-frequency radar system. The satellite’s instruments operate at L-band (25 cm) and S-band (10 cm) wavelengths. The longer L-band waves can penetrate forests and soil to sense moisture and land motion, while the shorter S-band waves pick up fine surface details like vegetation moisture and roughness. This combination lets NISAR detect both large-scale and fine-scale changes.

From orbit, NISAR will circle Earth 14 times per day, scanning nearly all land and ice surfaces twice every 12 days. Its data will track changes like the advance or retreat of polar ice sheets and slow ground shifts from earthquakes, and will also aid agriculture and disaster planning by helping monitor crops and prepare for floods and hurricanes.

Continue Reading

Trending