Connect with us

Published

on

Extreme heat waves are not only a growing threat to humans but also to vital pollinators like bumble bees. A recent study published in the Proceedings of the Royal Society B reveals that heat waves can significantly impair bumble bees’ ability to detect the scents of flowers they depend on for food. This discovery raises concerns about the potential impact of climate change on bee populations and the agricultural industries that rely on them.

Impact of Heat on Bumble Bee Physiology

Coline Jaworski, a field ecologist at France’s National Institute for Agricultural, Food and Environmental Research, told Science.org that heat waves have a clear effect on bumble bee physiology. If these bees struggle to find their food sources, the consequences could reportedly be severe for crops that depend on their pollination. Without successful pollination, seeds won’t form, leading to a decline in plant reproduction, which could have disastrous outcomes for food supply chains.

Bumble bees play a crucial role in pollinating various crops that contribute to about one-third of the global food supply. Despite their importance, bee populations have been on a steady decline, primarily due to habitat loss and climate change. Last year, the planet experienced record-breaking heat, and such conditions are becoming more frequent, correlating with the ongoing decline in bee populations, as per the study.

How Rising Temperatures Affect Bumble Bees

Bumble bees rely on their eyesight to locate flower patches and use their antennae to detect the scent of the most suitable flowers. Receptors in their antennae pick up scent molecules, which are then transmitted as electrical signals to their brains, helping them decide which flowers to visit. Sabine Nooten, an insect ecologist at Julius Maximilians University of Würzburg, told the publication how rising temperatures affect this vital process in bumble bees.

Nooten and her team reportedly conducted experiments on 190 bumble bees from two species commonly found in Europe: Bombus pascuorum and Bombus terrestris. They exposed the bees to a simulated heat wave by placing them in a tube where the temperature was raised to 40°C for nearly three hours, as per Science.org. Afterward, the team removed the bees’ antennae and tested their electrical responses to three common flower scents: ocimene, geraniol, and nonanal.

The Long-Lasting Effects of Heat Exposure

The results showed that heat exposure significantly reduced the bees’ antennal responses to these scents, sometimes by as much as 80 percent. Sandra Rehan, a molecular ecologist at York University, commented on the importance of this study, noting that 40°C is within the range of temperatures currently experienced in many parts of the world.

Worryingly, most of the heat-exposed bees’ antennae failed to recover their ability to detect scents, even after a 24-hour recovery period in cooler conditions. This suggests that the damage caused by heat waves could have long-lasting effects on bumble bees’ ability to forage effectively.

The study also found that the wild species B. pascuorum was less resilient to heat compared to B. terrestris. Additionally, female worker bees, which are responsible for gathering food for their colonies, appeared more vulnerable to heat exposure than male bees.

Implications for Future Research and Pollinator Health

Future research should explore whether other bee species and pollinators, such as hoverflies, suffer similar heat-induced damage. Jaworski warns that some solitary pollinators, like the carpenter bee, might be at even greater risk. These insects do not have the advantage of stored food in colonies and could face devastating consequences if they are unable to forage effectively due to extreme heat.

This research highlights the pressing need to understand and address the impacts of climate change on vital pollinators, as their decline could have far-reaching effects on global food security.

Continue Reading

Science

Sun Unleash a 600,000-Mile Filament in Fiery Eruption

Published

on

By

Sun Unleash a 600,000-Mile Filament in Fiery Eruption

A stunning solar eruption captured on video on the night of May 12-13 has revealed a 600,000-mile-long filament blasting away from the sun’s northern hemisphere. The outburst occurred around 8 p.m. EDT (0000 GMT) and spanned a distance more than twice that between Earth and the moon. A massive solar filament suspended above the sun’s surface became unstable and erupted, blasting a CME into space along with a cloud of plasma and magnetic energy. Preliminary models show Earth is nowhere in the firing range of this fiery ejection, but researchers are still watching the phenomenon closely.

Sun’s 600,000-Mile-Long ‘Angel-Wing’ Eruption Stuns Skywatchers, Signals Rising Solar Activity

As per the Space.com report, the eruption originated from a filament structure composed of dense, cooler solar plasma held aloft by magnetic fields. These structures often appear as dark ribbons across the sun’s disk and can become unstable without warning. Solar observers noted that this latest eruption dwarfed similar recent events, both in scale and intensity. Aurora chaser Jure Atanackov remarked that the CME from the blast was among the most spectacular seen this year, although fortunately, it is headed north and will miss Earth.

The event, dubbed the “angel-wing” or “bird-wing” eruption by observers online, was widely shared among solar watchers. Vincent Ledvina, another aurora chaser, noted its incredible visual impact, describing it as a sight worth watching on loop. The eruption is, in fact, so long, by more than a million kilometres, that it is of scientific interest and visually striking as well. Geomagnetic storms resulting from this kind of CME can affect satellites, communication systems, and even Earth.

Although it foreshadows the unpredictable nature of our host star, this particular CME does not pose a threat to Earth at the moment. Solar activity is ramping up as we approach the peak of Solar Cycle 25 in 2025. What’s more, more — and maybe more Earth-threatening — solar explosions could follow.
As a reminder of the formidable and delicate forces at play relatively close by on Earth, the sun remains a source of wonder for astronomers and skywatchers alike.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


SpaceX Fires Up Starship Upper Stage for Ninth Test Flight in Static Fire Trial



Apple Unveils Accessibility Nutrition Labels, Magnifier for Mac, Braille Access and More

Continue Reading

Science

New Study Challenges Fuzzy Dark Matter with Stronger Mass Constraint

Published

on

By

New Study Challenges Fuzzy Dark Matter with Stronger Mass Constraint

Over 80 years, dark matter has been a great mystery for the researchers. Elusive of direct observation, it has made its existence known only by the gravitational impacts it makes on cosmic structures. Even though there is a lot of indirect evidence of its existence, the real nature of dark matter is still unknown. An important attribute of its particle is mass. While past studies have constrained the mass of fermionic dark matter using quantum principles like Pauli’s exclusion principle, bosonic dark matter remained less constrained. In a recent study, scientists have estimated a new lower bound on the mass of ultra-lightweight bosonic dark matter particles.

About the study

According to the study published in Physical Review Letters, the mass of ultralight bosonic dark matter must be more than 2 × 10-21 electron volts (eV), 100 times more than previous estimates using Heisenberg’s uncertainty principle.

The team of researchers, led by the first author of the study, Tim Zimmermann, a Ph.D. candidate at the Institute of Theoretical Astrophysics, University of Oslo, focused their method on the data of Leo II, the Milky Way’s satellite galaxy. It is a dwarf galaxy 1,000 times smaller than the Milky Way. By analyzing the internal motions of stars within Leo II—heavily influenced by dark matter—the team derived 5,000 possible dark matter density profiles using a tool called GRAVSPHERE.

They compared these with profiles generated by quantum wave functions of various dark matter particle masses. If the particle is too light, quantum fuzziness spreads it too thinly, preventing it from forming the observed structures. The study concluded that the dark matter particle must have a mass greater than 2.2 × 10⁻²¹ electron volts (eV)—over 100 times more than previous lower estimates.

Impact on dark matter studies

The findings have significant implications for popular ultralight dark matter models, particularly fuzzy dark matter, which typically proposes particles with masses around 10-22 ev.

Looking ahead, the team plans to extend their methodology to mixed dark matter scenarios, where dark matter is composed of particles with different masses.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


iPhone 17 Air Said to Be Thinner Than Samsung Galaxy S25 Edge; Battery Capacity Leaked



Home Projector Market to Double In Next 4 Years, South and West Key for BenQ India: Rajeev Singh

Continue Reading

Science

NASA’s Perseverance Captures Deimos Before Dawn in Striking Martian Sky Image

Published

on

By

NASA’s Perseverance Captures Deimos Before Dawn in Striking Martian Sky Image

NASA’s Perseverance rover has delivered a striking early morning image of Mars’ moon Deimos, taken just before dawn on March 1, 2025 — Sol 1433 of the mission. Captured at 4:27 a.m. local time using the rover’s left navigation camera, the view combines 16 long-exposure shots taken over 52 seconds. Each frame used the maximum exposure setting of 3.28 seconds, enabling the camera to glimpse faint celestial features in Mars’ dim pre-dawn sky. Though the image appears hazy due to low light and digital noise, the effort reveals a rare visual of Deimos suspended in the Martian atmosphere.

Perseverance’s Celestial Snapshot Reveals Deimos, Distant Stars, and Martian Sky Dynamics

As per a report from NASA’s Jet Propulsion Laboratory, the brightness of Deimos is accompanied by multiple white specks across the sky, many of which are likely caused by image noise. Some of them could be cosmic rays hitting the sensor while exposing. Two bright spots, Regulus and Algieba, are easily found in the image. It adds perspective on the rover’s unique view of things, these stars, which belong to the Leo constellation. The image was stitched together onboard and transmitted later to Earth, where researchers analysed the result.

These make the resultant composition an example of other possible roles of the Perseverance rover as an observational instrument apart from geology and surface exploration. While atmospheric haze and digital distortion make it difficult to show in full clarity, the long-exposure effort shows the faintness with which Martian moons and nearby stars can, in fact, still be tracked under controlled conditions. Deimos appears brighter due to its reflective nature and proximity during this early-morning observation.

Researchers believe this type of celestial photography may enhance understanding of Mars‘ sky conditions and moon dynamics. Deimos and Phobos, the Red Planet’s two moons, are of growing interest as potential markers for future orbit-based missions. Capturing them from the surface during optimal lighting conditions offers new insights into their behaviour.

NASA continues to push imaging capabilities on Mars through Perseverance’s tools. With each sol, even distant cosmic views — like Deimos before dawn — offer new visual science from the Martian frontier.

Continue Reading

Trending