Connect with us

Published

on

Extreme heat waves are not only a growing threat to humans but also to vital pollinators like bumble bees. A recent study published in the Proceedings of the Royal Society B reveals that heat waves can significantly impair bumble bees’ ability to detect the scents of flowers they depend on for food. This discovery raises concerns about the potential impact of climate change on bee populations and the agricultural industries that rely on them.

Impact of Heat on Bumble Bee Physiology

Coline Jaworski, a field ecologist at France’s National Institute for Agricultural, Food and Environmental Research, told Science.org that heat waves have a clear effect on bumble bee physiology. If these bees struggle to find their food sources, the consequences could reportedly be severe for crops that depend on their pollination. Without successful pollination, seeds won’t form, leading to a decline in plant reproduction, which could have disastrous outcomes for food supply chains.

Bumble bees play a crucial role in pollinating various crops that contribute to about one-third of the global food supply. Despite their importance, bee populations have been on a steady decline, primarily due to habitat loss and climate change. Last year, the planet experienced record-breaking heat, and such conditions are becoming more frequent, correlating with the ongoing decline in bee populations, as per the study.

How Rising Temperatures Affect Bumble Bees

Bumble bees rely on their eyesight to locate flower patches and use their antennae to detect the scent of the most suitable flowers. Receptors in their antennae pick up scent molecules, which are then transmitted as electrical signals to their brains, helping them decide which flowers to visit. Sabine Nooten, an insect ecologist at Julius Maximilians University of Würzburg, told the publication how rising temperatures affect this vital process in bumble bees.

Nooten and her team reportedly conducted experiments on 190 bumble bees from two species commonly found in Europe: Bombus pascuorum and Bombus terrestris. They exposed the bees to a simulated heat wave by placing them in a tube where the temperature was raised to 40°C for nearly three hours, as per Science.org. Afterward, the team removed the bees’ antennae and tested their electrical responses to three common flower scents: ocimene, geraniol, and nonanal.

The Long-Lasting Effects of Heat Exposure

The results showed that heat exposure significantly reduced the bees’ antennal responses to these scents, sometimes by as much as 80 percent. Sandra Rehan, a molecular ecologist at York University, commented on the importance of this study, noting that 40°C is within the range of temperatures currently experienced in many parts of the world.

Worryingly, most of the heat-exposed bees’ antennae failed to recover their ability to detect scents, even after a 24-hour recovery period in cooler conditions. This suggests that the damage caused by heat waves could have long-lasting effects on bumble bees’ ability to forage effectively.

The study also found that the wild species B. pascuorum was less resilient to heat compared to B. terrestris. Additionally, female worker bees, which are responsible for gathering food for their colonies, appeared more vulnerable to heat exposure than male bees.

Implications for Future Research and Pollinator Health

Future research should explore whether other bee species and pollinators, such as hoverflies, suffer similar heat-induced damage. Jaworski warns that some solitary pollinators, like the carpenter bee, might be at even greater risk. These insects do not have the advantage of stored food in colonies and could face devastating consequences if they are unable to forage effectively due to extreme heat.

This research highlights the pressing need to understand and address the impacts of climate change on vital pollinators, as their decline could have far-reaching effects on global food security.

Continue Reading

Science

NASA Scientists Study Crystal Formation in Space For Future Applications

Published

on

By

NASA Scientists Study Crystal Formation in Space For Future Applications

NASA scientists have been studying crystals to optimise the process of crystallisation for decades. Various researchers have conducted research on crystals within the first quarter of the year, the latest being protein crystallisation in microgravity. Alexandra Ros from Arizona State University led the research by launching a protein crystallisation test in the International Space Station (ISS). The experiments are meant to determine the growth of protein crystals in space using newly developed microfluid devices. The research agenda is to examine whether space-grown crystals can achieve better quality than those formed on Earth.

What is Crystallisation, & How Does It Impact Our Lives?

It is the process of freezing of liquid or molten materials in the form of highly organised molecules called crystals. These crystals can be a blend of different types of materials. This world consists of crystal examples everywhere. It would be wrong to say that we don’t live in a world of crystals.

Be it a coffee mug, cellphone or silicon that is used to form the brains of electronics and used in memory chips, everything is a result of crystallisation. Other types of semiconductor crystals are used as detectors for different radiations, such as gamma rays, infrared rays, etc. Lasers used in scanning the product are made of optical crystals. Turbine blades are an example of metal crystals used in the jet engine.

Why and How NASA Studies Crystals?

The scientists studied the growth of zinc selenide crystals in space, with the crystals on Earth, explained NASA. The result from the observations marked the way for the improvement of the operations of infrared wavelength in the high powered lasers. The research findings provide an insight into the strong influence of gravity on the electrical, optical and structural characteristics of the crystals.

Researchers have optimised the crystal usage for several years to study the types of crystals for growing in space.

The crystals grown on Earth have defects such as little cracks; these cracks can damage the properties of the crystals. This marks a strong reason why scientists want to study crystals in space, thus getting a complete microgravitational environment where they can grow better. Convection produced due to the presence of the gravitational force degrades the quality of crystals.

However, this convection is not seen in the environment of microgravity, helping in the better quality crystals. The ISS is now converted to a complete lab for the study of the formation of crystals, which can be further applied in technology and medicine.

Continue Reading

Science

Missing Non-Dark Matter Might Be Hidden Within Hydrogen Gas Clouds

Published

on

By

Missing Non-Dark Matter Might Be Hidden Within Hydrogen Gas Clouds

It is observed that about half of the matter cannot be occupied just by stars and galaxies. Scientists say that hydrogen gas clouds could unveil it. Missing matter of the universe may have finally been detected. It is reported by the astronomers that the stuff revealed and not dark matter accounts for only 15 percent of the total mass of the universe. For years, scientists have rushed into a problem, and they have not been able to find even about half of the normal matter in the galaxies, stars, and other space structures that can be seen.

Research and Discovery

At present, a large international team of researchers led by Simone Ferraro from the University of California, Berkeley, concluded that the hydrogen gas cloud that surrounds most galaxies is more extensive than previously realised by scientists. The extensiveness is so high that it could even be responsible for most of the universe’s missing matter, according to the study, which is published in the online pre-print journal arXiv.

The hunt for the Missing Matter

The researchers used data from the Dark Energy Spectroscopic Instrument (DESI) for the investigation. With this instrument, the team piled images of approx. 7 million galaxies for measuring the mild halos of ionised hydrogen gas at the edges of the galaxies, which cannot be observed by normal methods. So the team analysed the remaining radiation from the Big Bang that is widespread throughout the cosmos. If these faint halos connect the other galaxies, there will be a cosmic web spanning far and will account for the undetected matter in the past.

Black Holes on Duty

This discovery may also change the perspective on the black hole behaviour. Scientists at first thought that blackholes forced out a high volume of gases early in their life cycle. At present, the study says that these black holes are much more frequent in action than earlier thought. Boryana Hadzhiyska, an astronomer, said in the statement that one of the hypothetical theories is that the black holes switch on and off in their duty cycle.

Future Scope

The next step is to use new measurements in existing universe models. Hadzhiyska said, there are many people interested in using our measurements for doing a thorough analysis, including this missed gas.

Continue Reading

Science

Researchers Find Microplastics in Caddisfly Casings From the 1970s

Published

on

By

Researchers Find Microplastics in Caddisfly Casings From the 1970s

An expert team of biologists practising at the Naturalis Biodiversity Centre, a research museum in the Netherlands, has recently discovered evidence of the incorporation of microplastics into caddisfly casings. However, what’s even more interesting is that the use of these microplastics for building the casings has been progressing from as far back as the 1970s. This breaks the traditional understanding of how far back the impact of microplastics goes. If the research is to be believed, microplastics began damaging the environment half a century ago.

What is a Caddisfly?

As per a study published in the journal Science of the Total Environment, this team of biologists exemplified the discovery of microplastics in larval casings at the museum. A caddisfly is a moth-like insect that is found near freshwater habitats like lakes and streams. These are found in most countries across the world. Caddisflies make their home near freshwater streams and deposit their eggs in the form of jelly. Once the larva hatches, cladissfly begin to incorporate materials from their surroundings to protect themselves from predators.

How was the Discovery made?

The discovery commenced when something colourful was witnessed on one larva casing by one of the team members of the biologists. Further investigation confirmed that the colourful component on the larva was microplastic. With this discovery, the biologists decided to observe the other 549 casings from their collection over several decades. As a result of their study, many casings were found to have microplastics on them.

To elaborate further, one of the casings from the year 1986 had multiple blue colored microplastics. Likewise, another casing, dated back to 1971, possessed yellow plastic.

The Researcher’s Perspective

Post-discovering microplastics on cladissfly casing, the researchers suggest that the contamination of the environment has been going on for at least half a century. Significantly, they have proposed the possibility of other species being impacted by the same.

The microplastics present on the casings are compromising the safety of claddisflies as they increase visibility, which raises the chances of getting noticed by the predators. Natural materials used in building casing are being dominated by these microplastics. These factors are putting these creatures at great risk of being found and eaten by fish and birds.

Continue Reading

Trending