Connect with us

Published

on

A new study suggests that nanorobots, significantly smaller than blood cells, could deliver clot-forming drugs directly to brain aneurysms, potentially preventing strokes. Although this technology has only been tested on rabbits, it offers a promising alternative to treatments such as stents and coils, which sometimes require long-term blood thinners. Qi Zhou, a research associate in bioinspired engineering at the University of Edinburgh, co-authored the study, explaining that these remotely controlled magnetic nanobots provide a more precise and safer method for sealing cerebral aneurysms without invasive implants.

How the Nanorobots Work

The research points out that the nanorobots, measuring just 295 nanometres in diameter, consist of a magnetic core, a clotting agent known as thrombin, and a coating that melts when heated. Surgeons can guide these nanobots using a magnetic field to the aneurysm site, where heat triggers the release of the drug, forming a clot to block the aneurysm from further blood circulation. This technique avoids the need for deep insertion into the brain’s delicate vessels.

Successful Testing in Rabbits

The nanorobots have so far been tested on rabbits with induced aneurysms in their carotid arteries. The results were promising, with stable clots forming to block the aneurysm completely, while the rabbits remained healthy during the two-week follow-up period. These clots don’t block the blood supply to the brain but close off the weak spot in the vessel, preventing potential ruptures.

Next Steps in the Research

The next stage involves testing the technology on larger animals that more closely mimic human physiology. The team will also work on improving the magnetic control to ensure precision in guiding the nanobots to aneurysms located deeper in the brain. While much more research is needed, Qi Zhou is optimistic about the potential of this technology to revolutionise aneurysm treatments.

Continue Reading

Science

Sun Unleash a 600,000-Mile Filament in Fiery Eruption

Published

on

By

Sun Unleash a 600,000-Mile Filament in Fiery Eruption

A stunning solar eruption captured on video on the night of May 12-13 has revealed a 600,000-mile-long filament blasting away from the sun’s northern hemisphere. The outburst occurred around 8 p.m. EDT (0000 GMT) and spanned a distance more than twice that between Earth and the moon. A massive solar filament suspended above the sun’s surface became unstable and erupted, blasting a CME into space along with a cloud of plasma and magnetic energy. Preliminary models show Earth is nowhere in the firing range of this fiery ejection, but researchers are still watching the phenomenon closely.

Sun’s 600,000-Mile-Long ‘Angel-Wing’ Eruption Stuns Skywatchers, Signals Rising Solar Activity

As per the Space.com report, the eruption originated from a filament structure composed of dense, cooler solar plasma held aloft by magnetic fields. These structures often appear as dark ribbons across the sun’s disk and can become unstable without warning. Solar observers noted that this latest eruption dwarfed similar recent events, both in scale and intensity. Aurora chaser Jure Atanackov remarked that the CME from the blast was among the most spectacular seen this year, although fortunately, it is headed north and will miss Earth.

The event, dubbed the “angel-wing” or “bird-wing” eruption by observers online, was widely shared among solar watchers. Vincent Ledvina, another aurora chaser, noted its incredible visual impact, describing it as a sight worth watching on loop. The eruption is, in fact, so long, by more than a million kilometres, that it is of scientific interest and visually striking as well. Geomagnetic storms resulting from this kind of CME can affect satellites, communication systems, and even Earth.

Although it foreshadows the unpredictable nature of our host star, this particular CME does not pose a threat to Earth at the moment. Solar activity is ramping up as we approach the peak of Solar Cycle 25 in 2025. What’s more, more — and maybe more Earth-threatening — solar explosions could follow.
As a reminder of the formidable and delicate forces at play relatively close by on Earth, the sun remains a source of wonder for astronomers and skywatchers alike.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


SpaceX Fires Up Starship Upper Stage for Ninth Test Flight in Static Fire Trial



Apple Unveils Accessibility Nutrition Labels, Magnifier for Mac, Braille Access and More

Continue Reading

Science

New Study Challenges Fuzzy Dark Matter with Stronger Mass Constraint

Published

on

By

New Study Challenges Fuzzy Dark Matter with Stronger Mass Constraint

Over 80 years, dark matter has been a great mystery for the researchers. Elusive of direct observation, it has made its existence known only by the gravitational impacts it makes on cosmic structures. Even though there is a lot of indirect evidence of its existence, the real nature of dark matter is still unknown. An important attribute of its particle is mass. While past studies have constrained the mass of fermionic dark matter using quantum principles like Pauli’s exclusion principle, bosonic dark matter remained less constrained. In a recent study, scientists have estimated a new lower bound on the mass of ultra-lightweight bosonic dark matter particles.

About the study

According to the study published in Physical Review Letters, the mass of ultralight bosonic dark matter must be more than 2 × 10-21 electron volts (eV), 100 times more than previous estimates using Heisenberg’s uncertainty principle.

The team of researchers, led by the first author of the study, Tim Zimmermann, a Ph.D. candidate at the Institute of Theoretical Astrophysics, University of Oslo, focused their method on the data of Leo II, the Milky Way’s satellite galaxy. It is a dwarf galaxy 1,000 times smaller than the Milky Way. By analyzing the internal motions of stars within Leo II—heavily influenced by dark matter—the team derived 5,000 possible dark matter density profiles using a tool called GRAVSPHERE.

They compared these with profiles generated by quantum wave functions of various dark matter particle masses. If the particle is too light, quantum fuzziness spreads it too thinly, preventing it from forming the observed structures. The study concluded that the dark matter particle must have a mass greater than 2.2 × 10⁻²¹ electron volts (eV)—over 100 times more than previous lower estimates.

Impact on dark matter studies

The findings have significant implications for popular ultralight dark matter models, particularly fuzzy dark matter, which typically proposes particles with masses around 10-22 ev.

Looking ahead, the team plans to extend their methodology to mixed dark matter scenarios, where dark matter is composed of particles with different masses.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


iPhone 17 Air Said to Be Thinner Than Samsung Galaxy S25 Edge; Battery Capacity Leaked



Home Projector Market to Double In Next 4 Years, South and West Key for BenQ India: Rajeev Singh

Continue Reading

Science

NASA’s Perseverance Captures Deimos Before Dawn in Striking Martian Sky Image

Published

on

By

NASA’s Perseverance Captures Deimos Before Dawn in Striking Martian Sky Image

NASA’s Perseverance rover has delivered a striking early morning image of Mars’ moon Deimos, taken just before dawn on March 1, 2025 — Sol 1433 of the mission. Captured at 4:27 a.m. local time using the rover’s left navigation camera, the view combines 16 long-exposure shots taken over 52 seconds. Each frame used the maximum exposure setting of 3.28 seconds, enabling the camera to glimpse faint celestial features in Mars’ dim pre-dawn sky. Though the image appears hazy due to low light and digital noise, the effort reveals a rare visual of Deimos suspended in the Martian atmosphere.

Perseverance’s Celestial Snapshot Reveals Deimos, Distant Stars, and Martian Sky Dynamics

As per a report from NASA’s Jet Propulsion Laboratory, the brightness of Deimos is accompanied by multiple white specks across the sky, many of which are likely caused by image noise. Some of them could be cosmic rays hitting the sensor while exposing. Two bright spots, Regulus and Algieba, are easily found in the image. It adds perspective on the rover’s unique view of things, these stars, which belong to the Leo constellation. The image was stitched together onboard and transmitted later to Earth, where researchers analysed the result.

These make the resultant composition an example of other possible roles of the Perseverance rover as an observational instrument apart from geology and surface exploration. While atmospheric haze and digital distortion make it difficult to show in full clarity, the long-exposure effort shows the faintness with which Martian moons and nearby stars can, in fact, still be tracked under controlled conditions. Deimos appears brighter due to its reflective nature and proximity during this early-morning observation.

Researchers believe this type of celestial photography may enhance understanding of Mars‘ sky conditions and moon dynamics. Deimos and Phobos, the Red Planet’s two moons, are of growing interest as potential markers for future orbit-based missions. Capturing them from the surface during optimal lighting conditions offers new insights into their behaviour.

NASA continues to push imaging capabilities on Mars through Perseverance’s tools. With each sol, even distant cosmic views — like Deimos before dawn — offer new visual science from the Martian frontier.

Continue Reading

Trending