The Aventura-X EV29 has much of the feel-good charm that comes along with nostalgic Vespa rides, yet without any of the exhaust noise, smell of gasoline, or oily rag on your workbench. I spent a few enjoyable weeks riding this fun little runabout and felt almost like I was cheating, getting the fun vibes without paying the normal entry price of muss and fuss that goes with classic ICE scooters.
First of all, I probably shouldn’t call it a Vespa, even though it looks and feels like one. Aventura-X probably walks a fine line as it is, conjuring up old-timey Vespa vibes while maintaining just enough differentiation to avoid legal issues. It’s a common game these days, giving us old-school feels without blatantly ripping off a decades-old brand.
But those kinds of issues aside, this scooter still brings with it a classic-inspired ride that feels oh-so-good.
Check it out in my video review below, then keep reading for all of my thoughts on this fun ride!
Aventura-X EV29 video review
Quick, what are the specs?
You probably want to know the numbers right off the bat, so let’s hop to it.
The version I tested is the Aventura-X EV29. It has a 2,900 watt motor fed by a 72V 20Ah battery. There are actually two battery slots under the seat, so you could add an extra battery to double the range from 35 miles up to 70 miles (56 km to 112 km). If you don’t have an extra battery, like mine, then you’ve got some extra storage under the seat!
The current sale price of US $3,295 doesn’t include the extra battery, which is an additional US $799. You do get the keyless start from a wireless keyfob included for free though as part of a promotional add-on, so at least you’ve got that going for you!
Obviously this scooter is built for looks, though that doesn’t mean it doesn’t have some decent utility baked into it as well.
There is a small storage area in front of the battery compartment, but it’s more of a phone/wallet/keys/sunglasses-sized storage compartment. There’s also a larger storage compartment in the right rear fender that I was able to squeeze three of my riding cameras into as well as my microphone setup.
I know that’s not a normal unit of measure unless you’re a YouTuber, but I’d guess that the wheel well storage is around 1.5 liters or so. It’s also roughly in the shape of a water bottle. So for the Americans in the room, picture a 2L soda bottle and subtract a bit.
Then you’ve got the wicker basket on back, though that’s an add-on accessory. It’s also not exactly a high-security solution, but it does give you some extra storage and definitely looks classy. In fact, it’d be right at home riding to a picnic in your local park.
Now I think most people will agree that the scooter looks great, which is nice since it isn’t terribly fast. At 30 mph (51 km/h), people will get a good long look at you as you cruise by. Aventura-X also has 50 mph (80 km/h) models, but the one I’m riding is built for looks, not for speed.
Considering I was testing this in Florida, where 50 mph roads are just how you exit your neighborhood, that lower speed was a bit of an issue. I mostly stuck to smaller streets where I could and stayed in the right lane when I had to take faster streets.
I can absolutely see the wisdom in having more speed for keeping your options open in terms of road choice. Obviously a 30 mph top speed is going to impact where you can ride, and so I see this model being better for cruising along the beach roads than commuting on the highway, if that wasn’t clear.
But I guess that’s the beauty of multiple options. You can get the 50 mph scooter that Aventura-X offers if you want to ride on faster roads, or can save some dough on the slower scooter if you’re sticking to neighborhood streets.
And as a quick note on safety: You’ll notice in the video at the top of this article that I’m wearing my motorcycle jacket and usually my riding gloves on the scooter (though admittedly I did forget my gloves a couple of times). I’m also in full pants and boots. While I’m not going to be anyone’s mother here, I try to never get on a motorcycle without all of my protective riding gear, and that’s how I recommend riding. When it comes to scooters, the more laissez-faire nature of the ride makes it easy to accidentally (or purposely) push the thought of riding gear to the back of your mind. “I’m just going for a little cruise,” is a common enough thought, and I’ll admit that I’ve often heard the siren’s call of a romantic scoot alongside the lapping waves in nothing but a t-shirt and shorts. But ultimately, this is still technically a motorcycle and you can still technically cheese grater the skin off various parts of your body in a crash. So just consider that when choosing your ride outfit.
While I’m wearing my Dianese mesh motorcycle jacket in this video since I was travelling, I’ve been more frequently wearing my Beyond Riders motorcycle gear for my pleasure/commuter riding since it has all the protective qualities I’m looking for but looks like typical street clothes. I just got a new flannel shirt from them that has hidden armor and a pair of khaki pants that get the same treatment.
So I’m not saying you have to suit up, but I am saying I’d recommend it. Ok, safety rant over.
I’m glad to see both a side stand and a center stand included on the scooter, since they’re useful in different situations. The side stand is great for quick stops like hopping off and running into a store, while the center stand gives more stable parking, especially when parking on a hill or looser terrain like grass. It’s rare to see motorcycles or scooters that offer both. My daily rider – a Gogoro – has both, and I use them both often.
With cute little 10″ wheels and a faux leather seat, the scooter definitely looks the part of a vintage getup. Even the handlebars almost look like they could be from several decades past, skipping the big gaudy plastic molded parts of today’s scooters and putting as much metal as possible on those bars instead. I have a ’69 Honda Sports Cub and the bars/switches/mirrors, etc. all actually look quite similar to those on the Aventura-X. The rubber end grips take away from the retro vibe a bit, but not too much.
However, the body panels don’t get the same classic treatment. While they look the part, they’re actually plastic. That is fine from a few steps back since you’d never know from a glance. But if you grab hold of the front shield and shake it, it feels like a plastic panel.
That’s not really an issue per se, but it means you might want to be careful with your parking so you don’t crack a panel that would have merely dinged if it had been steel or aluminum.
As for the ride, I’ve long been a scooter fan. I’m a daily scooter rider myself. Since my wife and I went car-less a while back, an electric seated scooter is our main form of conveyance. And so the wide foot area of the Aventura-X feels at home to me, as does the convenient bag hook for carrying various odds and ends along for the ride.
In fact, as much as I like my motorcycles, I generally opt for my scooters when I’m actually commuting or running errands since the extra foot space makes it easier to carry things with me or do the occasional shopping trip.
The feel will be familiar to any scooter rider, even if the wheels are a tad bit smaller than on some of my other rides. The long bench seat is comfortable, the large front shield keeps you largely weather protected from splashes and road debris, and you get all the joy of being part of the environment (instead of watching it go by through a window) yet without the complex feelings that many people have towards true motorcycles. Basically, it’s all of the fun without the baggage.
Ultimately, I’m not exactly sure what I expected of the Aventura-X, but it definitely left me smiling and satisfied. It’s a fun, retro ride that seems to bring joy to just about everyone who sees you go by.
At the same time, though, you’re paying a premium for those feel-good rides. At its current price of $3,295, this is obviously not the most affordable way to cruise around at 30 mph. And speaking of which, that 30 mph speed is definitely limiting, leaving you barely faster than an electric bicycle yet on a vehicle that looks very out of place in the bike lane.
In fact, you almost certainly shouldn’t be using it in the bike lane, unless your local laws allow it. When I spent a year in Boston back in 2018, I actually could legally ride my 30 mph electric moped (a Genze 2.0, RIP) in the bike lane. Yet even with the law on my side, cyclists who saw me were pissssssed about it. That meant I rarely actually used the bike lanes unless it was to briefly skip a line of traffic, and even then I was always extra cognizant of any actual cyclists around me. I’m not sure many places would allow an Aventura-X in the bike lanes these days, or if Boston even still allows mopeds in, and so you’ll need to plan your own local trips accordingly.
There’s definitely a place for a ride like this, and I’m glad vintage-inspired electric scooters exist. I would certainly consider springing for the extra 20 mph though, as it opens up many more possibilities for where you can ride. But if you’re in a sleepy neighborhood or laid-back beach town, zipping down to that sea breeze coast at 30 mph on a scooter that looks like a blast from the past might be the perfect ride indeed.
FTC: We use income earning auto affiliate links.More.
On Inauguration Day, President Donald Trump issued an executive order indefinitely halting permits for new onshore wind energy projects on federal land, as well as new leases for offshore wind farms in U.S. coastal waters. The action not only fulfilled Trump’s “no new windmills” campaign pledge, but struck yet another blow to the wind industry, which has been hit hard over the past few years by supply chain snags, price increases upending project economics, public opposition and political backlash against federal tax credits, especially those spurring the fledgling offshore wind sector.
Nonetheless, the nation’s well-established onshore wind industry, built out over several decades, is generating nearly 11% of America’s electricity, making it the largest source of renewable energy and at times last year exceeding coal-fired generation. On April 8, the fossil-fuels-friendly Trump administration took measures to bolster coal mining and power plants, but as the infrastructure driving wind energy ages, efforts to “repower” it are creating new business opportunities for the industry’s key players.
This repowering activity has emerged as a bright spot for the wind industry, giving a much-needed boost to market leaders GE Vernova, Vestas and Siemens Gamesa, a subsidiary of Munich-based Siemens Energy. Following several challenging years of lackluster performance — due in particular to setbacks in both onshore and offshore projects — all three companies reported revenue increases in 2024, and both GE Vernova and Siemens stock have moved higher.
GE Vernova, spun off from General Electric a year ago, led overall onshore wind installations in 2024, with 56% of the U.S. market, followed by Denmark’s Vestas (40%) and Siemens Gamesa (4%).
Stock Chart IconStock chart icon
GE Vernova stock performance over the past one-year period.
According to the U.S. Energy Information Administration, installed wind power generating capacity grew from 2.4 gigawatts (GW) in 2000 to 150.1 GW as of April 2024. Although the growth rate for launching new greenfield onshore wind farms has slowed over the last 10 years, the U.S. is still poised to surpass 160 GW of wind capacity in 2025, according to a new report from energy research firm Wood Mackenzie.
There currently are about 1,500 onshore wind farms — on which more than 75,600 turbines are spinning — across 45 states, led by Texas, Iowa, Oklahoma, Illinois and Kansas. Virtually all of the wind farms are located on private land, and many of the largest ones are owned and operated by major energy companies, including NextEra Energy, RWE Clean Energy, Pattern Energy, Clearway Energy, Xcel Energy and Berkshire Hathaway‘s MidAmerican Energy, which generates 59% of it renewable energy from wind, including 3,500 turbines operating across 38 wind projects in Iowa.
A growing number of the turbines are 20-plus years old and nearing the end of their lifecycle. So increasingly, operators have to decide whether to upgrade or replace aging turbines’ key components, such as blades, rotors and electronics, or dismantle them altogether and erect new, technologically advanced and far more efficient models that can increase electricity output by up to 50%.
“What’s becoming clear is that more and more of the U.S. installed base [of onshore turbines] has exceeded its operational design life,” said Charles Coppins, research analyst for global wind at Wood Mackenzie, “and now operators are looking to replace those aging turbines with the latest [ones].”
To date, approximately 70 GW of onshore wind capacity has been fully repowered in the U.S., according to Wood Mackenzie, while an additional 12 GW has been partially repowered. The firm estimates that around 10,000 turbines have been decommissioned and that another 6,000 will be retired in the next 10 years, Coppins said.
Damaged wind turbine that was first hit by a tornado then lightning.
Ryan Baker | Istock | Getty Images
Beyond the fact that aged-out turbines need to be upgraded or replaced, repowering an existing wind farm versus building a new site presents economic benefits to operators and OEMs. To begin with, there’s no need to acquire property. In fact, in certain situations, because today’s turbines are larger and more efficient, fewer turbines are needed. And they’ll generate additional electricity and have longer lifecycles, ultimately delivering higher output at a lower cost.
Even so, “there are some limitations on how much capacity you could increase a project by without having to go through new permitting processes or interconnection queues” to the power grid, said Stephen Maldonado, Wood Mackenzie’s U.S. onshore analyst. As long as the operator is not surpassing the allowed interconnection volume agreed to with the local utility, they can add electricity to the project and still send it to the grid.
Public opposition, Maldonado said, may be another hurdle to get over. Whether it’s a new or repower wind project, residents have expressed concerns about environmental hazards, decreased property values, aesthetics and general anti-renewables sentiment.
RWE, a subsidiary of Germany’s RWE Group, is the third largest renewable energy company in the U.S., owning and operating 41 utility-scale wind farms, according to its CEO Andrew Flanagan, making up 48% of its total installed operating portfolio and generating capacity, which also includes solar and battery storage.
One of RWE’s two repower projects underway (both are in Texas), is its Forest Creek wind farm, originally commissioned in 2006 and featuring 54 Siemens Gamesa turbines. The project will replace them with 45 new GE Vernova turbines that will extend the wind farm’s life by another 30 years once it goes back online later this year. Simultaneously, RWE and GE Vernova are partnering on a new wind farm, immediately adjacent to Forest Creek, adding another 64 turbines to the complex. When complete, RWE will deliver a total of 308 MW of wind energy to the region’s homes and businesses.
Flanagan noted that the combined projects are related to increased electricity demands from the area’s oil and gas production. “It’s great to see our wind generation drive the all-of-the-above energy approach,” he said. What’s more, at its peak, the repower project alone will employ 250 construction workers and over its operating period bring in $30 million in local tax revenue, he added.
In turn, the twin projects will support advanced manufacturing jobs at GE Vernova’s Pensacola, Florida, facility, as well as advancing the OEM’s repower business. In January, the company announced that in 2024 it received orders to repower more than 1 GW of wind turbines in the U.S.
Koiguo | Moment | Getty Images
Siemens Gamesa has executed several large U.S. repowering projects, notably MidAmerican’s expansive Rolling Hills wind farm in Iowa, which went online in 2011. In 2019, the company replaced 193 older turbines with 163 higher-capacity models produced at its manufacturing plants in Iowa and Kansas.
Last year, Siemens Gamesa began repowering RWE’s 17-year-old Champion Wind, a 127-MW wind farm in West Texas. The company is upgrading 41 of its turbines with new blades and nacelles (the housing at the top of the tower containing critical electrical components) and adding six new turbines.
In early April, Clearway announced an agreement with Vestas to repower its Mount Storm Wind farm in Grant County, West Virginia. The project will include removing the site’s 132 existing turbines and replacing them with 78 new models. The repower will result in an 85% increase in Mount Storm’s overall electricity generation while using 40% fewer turbines.
Preparing for ‘megatons’ of turbine recycling and tariffs
Another benefit of repowering is invigorating the nascent industry that’s recycling megatons of components from decommissioned turbines, including blades, steel, copper and aluminum. Most of today’s operational turbines are 85% to 95% recyclable, and OEMs are designing 100% recyclable models.
While the majority of mothballed blades, made from fiberglass and carbon fiber, have historically ended up in landfills, several startups have developed technologies recycle them. Carbon Rivers, for example, contracts with the turbine OEMs and wind farm operators to recover glass fiber, carbon fiber and resin systems from decommissioned blades to produce new composites and resins used for next-generation turbine blades, marine vessels, composite concrete and auto parts.
Veolia North America, a subsidiary of the French company Veolia Group, reconstitutes shredded blades and other composite materials into a fuel it then sells to cement manufacturers as a replacement for coal, sand and clay. Veolia has processed approximately 6,500 wind blades at a facility in Missouri, and expanded its processing capabilities to meet demand, according to David Araujo, Veolia’s general manager of engineered fuels.
Trump’s new-project moratorium isn’t his only impediment to the wind industry. The president’s seesaw of import tariffs, especially the 25% levy on steel and aluminum, is impacting U.S. manufacturers across most sectors.
The onshore wind industry, however, “has done a really good job of reducing geopolitical risks,” said John Hensley, senior vice president for markets and policy analysis at the American Clean Power Association, a trade group representing the clean energy industry. He cited a manufacturing base in the U.S. that includes hundreds of plants producing parts and components for turbines. Although some materials are imported, the investment in domestic manufacturing “provides some risk mitigation to these tariffs,” he said.
Amidst the headwinds, the onshore wind industry is trying to stay focused on the role that repowering can play in meeting the nation’s exponentially growing demand for electricity. “We’re expecting a 35% to 50% increase between now and 2040, which is just incredible,” Hensley said. “It’s like adding a new Louisiana to the grid every year for 15 years.”
GE Vernova CEO Scott Strazik recently told CNBC’s Jim Cramer that the growth of the U.S.’s electric load is the largest since the industrial boom that followed the end of the second world war. “You’ve got to go back to 1945 and the end of World War II, that’s the infrastructure buildout that we’re going to have,” he said.
As OEMs and wind farm developers continue to face rising capital costs for new projects, as well as a Trump administration averse to clean energy industries, “repowering offers a pathway for delivering more electrons to the grid in a way that sidesteps or at least minimizes some of the challenges associated with all these issues,” Hensley said.
Capable of delivering up to 1,200 kW of power to get electric commercial trucks back on the road in minutes, the new ABB MCS1200 Megawatt Charging System is part of an ecosystem of electric vehicle supply equipment (EVSE) that ABB’s bringing to this year’s ACT Expo.
ABB E-mobility is using the annual clean trucking conference to showcase the expansion of its EVSE portfolio with three all-new charger families: the field-upgradable A200/300 All-in-One chargers, the MCS1200 Megawatt Charging System for heavy-duty vehicles shown (above), and the ChargeDock Dispenser for flexible depot charging.
The company said its new product platform was built by applying a computer system-style domain separation to charger design, fundamentally improving subsystem development and creating a clear path forward for site and system expansion. In other words, ABB is selling a system with both future-proofing and enhanced dependability baked in.
“We have built a system by logically separating a charger into four distinct subsystems … each functioning as an independent subsystem,” explains Michael Halbherr, CEO of ABB E-mobility. “Unlike conventional chargers, where a user interface failure can disable the entire system, our architecture ensures charging continues even if the screen or payment system encounters issues. Moreover, we can improve each subsystem at its own pace without having to change the entire system.”
Advertisement – scroll for more content
The parts of ABB’s new EVSE portfolio that have been made public so far have already been recognized for design excellence, with the A400 winning the iF Gold Award and both the A400 and C50 receiving Red Dot Design Awards.
New ABB chargers seem pretty, good
ABB’s good-looking family; via ABB.
ABB says the systemic separation of its EVSE enhances both reliability and quality, while making deployed chargers easier to diagnose and repair, in less time. Each of the chargers’ subsystems can be tested, diagnosed, and replaced independently, allowing for quick on-site repairs and update cycles tailored to the speed of each systems’ innovation. The result is 99% uptime and a more future-proof product.
“The EV charging landscape is evolving beyond point products for specific use cases,” continued Halbherr. “By implementing this modular approach with the majority of our R&D focused on modular platforms rather than one-off products … it reduces supply chain risks, while accelerating development cycles and enabling deeper collaboration with critical suppliers.”
Key markets ABB is chasing
HVC 360 Charge Dock Dispenser depot deployment; via ABB.
PUBLIC CHARGING – with the award winning A400 being the optimal fit for high power charging from highway corridors to urban locations, the latest additions to the A-Series All-in-One chargers offer a field-upgradable architecture allowing operators to start with the A200 (200kW) with the option to upgrade to 300kW or 400kW as demand grows. This approach offers scalability and protects customer investment, leading to Total Cost of Ownership (TCO) savings over 10 years.
PUBLIC TRANSIT AND FLEET – the new Charge Dock Dispenser – in combination with the already in market available HVC 360 – simplifies depot charging with a versatile solution that supports pantograph-, roof-, and pedestal charging options with up to 360kW of shared power and 150m/490 ft installation flexibility between cabinet and dispensers. The dispenser maintains up to 500A output.
HEAVY TRUCKS – building the matching charging infrastructure for commercial vehicles and fleets represents a critical innovation frontier on our journey to electrify transportation. Following extensive collaboration with industry-leading truck OEMs, the MCS1200 Megawatt Charging System delivers up to 1,200kW of continuous power — 20% more energy transfer than 1MW systems — providing heavy-duty vehicles with purpose-built single-outlet design for the energy they need during mandatory driver breaks. To support other use cases, such as CCS truck charging, a dual CCS and MCS option will also be available.
ABB says that the result of its new approach are chargers that offer 99% plus uptime — a crucial statistic for commercial charging operations and a key factor to ensuring customer satisfaction. The new ABB E-mobility EVSE product family will be on display for the first time at the Advanced Clean Transportation Expo (ACT Expo) in Anaheim, California next week, then again at Power2Drive in Munich, Germany, from May 7-9.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
Along with Tennessee Tech, Tennessee-based ultralight aircraft company Whisper Aero has secured a $500,000 grant to help advance the company’s innovative electric jet motor concept off the drawing board and onto the testing phase.
Earlier this month, the Tennessee Department of Economic and Community Development (TNECD) announced plans to award $500,000 to Tennessee Tech and Whisper Aero through the Transportation Network Growth Opportunity (TNGO) initiative.
“We look forward to using these award dollars to place students in internships working directly with Whisper Aero leaders,” said Tennessee Tech President Phil Oldham. “By learning from an electric propulsion innovator like Whisper Aero, our students will gain invaluable perspective and can take what they have learned in the classroom and apply it right here in Tennessee.”
The grant will see a Whisper Aero glider fitted with a pair of the company’s eQ250 electric-powered jet “propulsors” for UltraQuiet flight. Tennessee Tech faculty and students will carry out copper-bird ground testing to ensure the safe integration of engines, batteries, and controllers, and kickstart Tennessee Tech’s new Crossville Mobility Incubator.
Whisper Aero’s main claim to fame is its innovative UltraQuiet WhisperDrive (above). It’s effectively an electrically spun ducted fan jet engine that uses a large number of stiff composite fan blades inside a lightweight, acoustically treated duct. With so many blades, the Whisper Aero propulsor can push more air than a conventional prop while spinning much more slowly. As such, the “blade passage frequency” moves up to more than 16,000 Hz – outside the range of most human hearing but not, supposedly, high enough to freak out the beagles.
The Whisper Aero ultralight is effectively an Aériane Swift3 glider fitted with a pair of Whisper’s eQ250 propulsors, each capable of up to 80 lbs. of thrust. The Ultralight has a wingspan of over 40 ft with a maximum L/D of 35:1 and can be stressed to a design loading of +6/-4g, making it capable of some pretty impressive acrobatic feats.
The Swift3 glider is designed for a low speed, low power cruising speed of 45–55 knots with “just” 6.5 hp. Power-off glides from a few hundred feet showed a low sink rate, and a climb rate of 1,250 ft/min with full self-launching power (in other words: the Whisper glider doesn’t have to be towed by a launch vehicle, like a conventional ultralight glider).
Quiet cool
Dual WhisperDrive fans deliver ~160 lbf of thrust; via Whisper Aero.
Range under full power is about 109 miles with current battery tech, but it’s expected that range under the latest EPiC 2.0 energy batteries would rise to nearly 170 miles.
Nathan Millecam, CEO of Electric Power System, said, “EPiC 2.0’s leap in energy density and thermal performance has enabled a significant increase in range, a clear validation of our next-gen cell technology. We are impressed by what the Whisper team continues to achieve in advancing electric aviation.”
The press release concludes explaining that flight tests are expected to show that the Whisper Aero glider can be flown, “a few hundred feet away from neighborhoods without any disturbances, while carrying a 220 lbs. payload with full range,” which is all kind of ominous in today’s political climate, but still pretty neat from a purely tech perspective.
With support from TNECD’s Transportation Network Growth Opportunity (TNGO) initiative, Tennessee Tech University and Whisper Aero are partnering to advance next-generation propulsion technology in the aerospace industry. This collaboration will enhance aerospace research and workforce development, ensuring Tennessee remains a leader in cutting-edge mobility solutions.
If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.