Connect with us

Published

on

Semi-aquatic lizards, such as the water anole (Anolis aquaticus), have a unique ability to stay submerged for extended periods by creating an air bubble around their snout. This behaviour, first observed in 2018, has now been confirmed in 18 other anole species. The air bubble helps the lizards breathe while underwater, enabling them to remain hidden from predators for longer durations. Researchers have recently discovered that this bubble is not just a side effect of their water-repellent skin but plays an essential role in their survival.

Air Bubbles Extend Dive Times

In a study led by Lindsey Swierk, assistant research professor in biological sciences at Binghamton University, 28 water anoles were observed to determine how long they could stay underwater with and without their air bubble. The results revealed that anoles with the air bubble could remain submerged 32% longer than those without. This extra time underwater helps them avoid predators in their natural habitats near riverbanks in Costa Rica and Panama.

How the Air Bubble Works

Water anoles produce the bubble by exhaling, which is then held in place by their hydrophobic skin. As they dive, the bubble expands and contracts, allowing the lizard to redistribute oxygen, enabling longer dives. The longest recorded dive for an unaltered anole during the study lasted over five minutes. However, anoles whose skin was treated to prevent the formation of the bubble had shorter dive times.

Future Research on Bubble Breathing

Swierk suggests that if the study had been conducted in the wild, the difference in dive times might have been more pronounced, as the pressure from real predators could push the lizards to stay submerged even longer. The research team now aims to explore whether the bubbles serve as a “physical gill,” similar to how diving beetles use trapped air to replenish their oxygen supply.

Continue Reading

Science

NASA Restores Contact With TRACERS Spacecraft SV1 After Communication Loss

Published

on

By

NASA has successfully reconnected with the TRACERS spacecraft after a period of silence. The team is assessing onboard systems and working on recovery to resume science operations. While progress is being made, full restoration will take time, with updates to follow via NASA’s TRACERS blog.

Continue Reading

Science

James Webb Space Telescope Spots Rare Protostar Blasting Twin Jets Across Milky Way

Published

on

By

NASA’s James Webb Space Telescope has captured a rare protostar about ten times the Sun’s mass blasting twin jets nearly eight light-years long. The beams carve through the glowing Sharpless 2-284 nebula, offering astronomers a vivid glimpse into how massive stars form and shape their galactic environment.

Continue Reading

Science

Scientists Say Solar Flares Are Hotter Than Expected, Could Reach 108 Million Degrees

Published

on

By

A groundbreaking study shows ions in solar flares can reach 108 million°F, about six times hotter than earlier estimates. The research explains decades-old mysteries in flare spectra and urges new “multi-temperature” models to better forecast space weather, protecting satellites, astronauts, and communications from hazardous solar storms.

Continue Reading

Trending