Connect with us

Published

on

The European Space Agency (ESA) is preparing to launch a unique satellite in 2027, designed specifically to study how satellites break apart upon reentry into Earth’s atmosphere. This mission, named DRACO (Destructive Reentry Assessment Container Object), will be an important step in ESA’s effort to develop technology that limits the creation of space debris. ESA has awarded the contract to Deimos, a European technology company, to build this spacecraft, which will provide invaluable data as it breaks apart during its reentry. This data will help scientists better understand satellite disintegration and its environmental impact.

Understanding Satellite Breakup

The goal of the DRACO mission is to collect data on how satellites disintegrate during reentry. By studying this, researchers aim to design future satellites that will fully burn up during reentry, reducing the risk of debris reaching the Earth’s surface. The mission will also examine how spacecraft reentry affects the atmosphere, including how different materials interact with it and what byproducts are produced.

Innovative DRACO Design

At 200 kilograms, DRACO will be about the size of a washing machine. Its design will allow it to break apart like a normal satellite, but a specially engineered capsule will survive reentry. This capsule, measuring 40 centimetres, will carry four cameras and 200 sensors to record crucial data during the breakup. After reentry, it will deploy a parachute and transmit the collected information before being lost at sea.

Advancing Zero Debris Technology

According to Holger Krag, ESA’s Head of Space Safety, the DRACO mission will play a key role in developing future satellite technology. The data it collects will be used to build more demisable satellites by 2030, aligning with ESA’s Zero Debris charter, which aims to stop the creation of space debris within this decade.

Tim Flohrer, head of ESA’s space debris office, also emphasised the mission’s importance in helping to advance zero-debris technologies, particularly as the number of satellite launches continues to increase worldwide.

Continue Reading

Science

Blue Origin Joins SpaceX in Orbital Booster Reuse Era With New Glenn’s Successful Launch and Landing

Published

on

By

Blue Origin’s New Glenn successfully launched NASA’s ESCAPADE mission to Mars on November 13, 2025, marking its second flight and its first ocean booster landing on the ship Jacklyn. The mission deploys twin satellites built by Rocket Lab to study how the solar wind strips Mars’ atmosphere during a 22-month journey to the Red Planet.

Continue Reading

Science

AI-Assisted Study Finds No Evidence of Liquid Water in Mars’ Seasonal Dark Streaks

Published

on

By

A large-scale AI analysis of more than two million Mars orbiter images shows that the planet’s dark slope streaks form through seasonal dust avalanches, not flowing briny water. The results settle a long-running debate, revealing that wind-driven dust activity shapes Mars’ surface and offering new insights into the planet’s climate past and exploration future.

Continue Reading

Science

Researchers Expose Shocking Vulnerabilities in Satellite Communications

Published

on

By

Researchers using basic satellite equipment intercepted thousands of unencrypted transmissions from space, exposing sensitive data such as corporate communications, text messages, and even government links. The study highlights major security flaws in satellite networks used worldwide. Experts warn the findings reveal how easily hackers could exploit these vulnerabili…

Continue Reading

Trending