Connect with us

Published

on

NASA and South Korea’s newly established Korea AeroSpace Administration (KASA) have entered into an agreement to embark on a collaborative mission to explore one of the last uncharted regions of space: the sun-Earth Lagrange Point 4 (L4). This unexplored area lies in a stable position in space, where the gravitational forces of the sun and Earth balance each other, allowing spacecraft to remain in a fixed position relative to the two bodies.

A New Era of Space Cooperation

On September 19, NASA Administrator Bill Nelson and KASA Administrator Youngbin Yoon signed a joint statement solidifying the growing cooperation between the two space agencies. The agreement highlights collaborative efforts in areas such as NASA’s Moon to Mars Architecture, space life sciences, lunar surface research, and space communications. It also includes the use of South Korea’s deep-space antenna, further strengthening this international partnership.

During the signing ceremony, NASA Administrator Nelson remarked, “We are proud to significantly grow our partnership with the Republic of Korea and its new space agency.” This joint mission builds on years of cooperation between the United States and South Korea, especially in space science and technology.

Exploring Lagrange Point 4

One of the central elements of this new collaboration is the mission to Lagrange Point 4, a unique area of space that has never been visited by spacecraft. While other Lagrange points, such as L1 and L2, are home to missions like the James Webb Space Telescope and the DSCOVR satellite, L4 has remained unexplored. Located 60 degrees in front of Earth’s orbit, it offers a gravitationally stable vantage point for observing the sun and solar winds.

South Korea plans to establish a solar wind observation station at L4, which could lead to significant advancements in our understanding of space radiation and the interactions between solar wind and Earth’s magnetosphere. The mission will also focus on data transmission, optical communications, and potential relay usage at this unique point in space.

While there is no confirmed launch date for the Lagrange Point 4 mission, it promises to open new avenues for research and deepen international cooperation in space exploration

Continue Reading

Science

AI Model Learns to Predict Human Gait for Smarter, Pre-Trained Exoskeleton Control

Published

on

By

Scientists at Georgia Tech have created an AI technique that pre-trains exoskeleton controllers using existing human motion datasets, removing the need for lengthy lab-based retraining. The system predicts joint behavior and assistance needs, enabling controllers that work as well as hand-tuned versions. This advance accelerates prototype development and could improve…

Continue Reading

Science

Scientists Build One of the Most Detailed Digital Simulations of the Mouse Cortex Using Japan’s Fugaku Supercomputer

Published

on

By

Researchers from the Allen Institute and Japan’s University of Electro-Communications have built one of the most detailed mouse cortex simulations ever created. Using Japan’s Fugaku supercomputer, the team modeled around 10 million neurons and 26 billion synapses, recreating realistic structure and activity. The virtual cortex offers a new platform for studying br…

Continue Reading

Science

UC San Diego Engineers Create Wearable Patch That Controls Robots Even in Chaotic Motion

Published

on

By

UC San Diego engineers have developed a soft, AI-enabled wearable patch that can interpret gestures with high accuracy even during vigorous or chaotic movement. The armband uses stretchable sensors, a custom deep-learning model, and on-chip processing to clean motion signals in real time. This breakthrough could enable intuitive robot control for rehabilitation, indus…

Continue Reading

Trending