Connect with us

Published

on

The annular solar eclipse on October 2, 2024, will be a remarkable celestial event. When the moon passes between the Earth and the sun, it will create a ring of fire visible from parts of the Southern Hemisphere. But how fast will this event unfold across the planet?

Why the Eclipse Speed Varies

The speed at which the moon’s shadow moves during the eclipse will differ based on your geographical location. The shadow is not uniform and will shift as it crosses different parts of the Earth. The curvature of the Earth, combined with the changing distance between the moon and the ground below, affects how quickly the shadow travels across the surface.

Where the Shadow Will Move the Fastest

In some areas, particularly when the eclipse is just beginning or ending, the shadow of the moon will race at incredible speeds. At these extreme points, the moon’s shadow will exceed 10 million km/h. This rapid movement occurs when the shadow hits the Earth at a sharp angle, causing the eclipse to flash across the sky in just moments.

Where the Shadow Will Move the Slowest

At certain points, particularly over the Pacific Ocean, the eclipse will slow down dramatically. In this region, the shadow of the moon will crawl at speeds of approximately 2,057 km/h. This is where the eclipse will last the longest, with the ring of fire remaining visible for several minutes, allowing observers to enjoy a prolonged view of this unique event.

What Causes the Speed Fluctuations?

The differing speeds are due to several factors. The eclipse begins when the shadow of the moon first makes contact with the Earth, which occurs at a steep angle, causing the shadow to move quickly. As the eclipse progresses, the shadow begins to strike the Earth more directly, slowing it down. The final factor is the distance between the moon and the Earth, which constantly shifts and further influences the speed.

Continue Reading

Science

X-Ray Nebula Discovery Brings Astronomers Closer to Solving Cosmic Ray Mystery

Published

on

By

A new study has linked an unexplained LHAASO detection to a pulsar-powered X-ray nebula, confirming it as a rare PeVatron capable of accelerating particles to extreme energies. The discovery is a major step toward solving the long-standing mystery of galactic cosmic rays. Researchers are now combining X-ray, gamma-ray and neutrino observations to trace these powerful …

Continue Reading

Science

China’s Massive JUNO Experiment Delivers Its First World-Class Neutrino Results

Published

on

By

China’s Jiangmen Underground Neutrino Observatory has delivered world-class results after only 59 days of data collection, achieving the most precise measurements yet of two major neutrino oscillation parameters. JUNO’s early performance surpasses all previous experiments, confirming a small but intriguing discrepancy between solar and reactor neutrino observation…

Continue Reading

Science

China Tests Humanoid Robots to Guide Travellers at Border Crossing

Published

on

By

China has begun testing UBTech’s Walker humanoid robots at a border facility near Vietnam, aiming to use them for guiding travellers, managing queues and supporting logistics tasks. The robots, arriving in December, feature autonomous battery-swapping for extended operation. The US$37 million contract reflects Beijing’s ambition to dominate global robotics and AI….

Continue Reading

Trending