Illinois utility ComEd kicked off the Chicago Drives Electric event with a $90 million bang, featuring a new Point of Purchase initiative to deliver instant discounts to qualifying business and public sector customers who make the switch to electric vehicles.
Chicago Drives Electric kicked off this morning with a media and industry day event sponsored by industry analysts CDK Global and the local electric utility, ComEd. The event is open all weekend long, and enables Chicago area car buyers to experience the hottest new EVs on the market without necessitating a high-pressure trip to a car dealer.
Now in its second year, Chicago Drives Electric has grown significantly — but that $90 million ComEd rebate program is the day’s big news. The utility’s Beneficial Electrification initiative is designed to provide more certainty around the total costs of converting commercial fleets to battery electric power, and is backed by a growing collaboration of more than 30 Illinois car and truck dealers, OEMs, and other local EV and auto industry stakeholders.
“Making the switch to electric vehicles shouldn’t be a challenge, which is why ComEd is committed to offering resources, tools and programs to remove barriers to EV adoption,” said Melissa Washington, Senior Vice President of Customer Operations at ComEd (at top). “… we launched our EV rebate program to help make it easier for customers to make the switch to electric vehicles. The new Point of Purchase EV rebate initiative, and the ability to provide instant rebates to fleet customers, is a necessary continuation of our original offering to make widespread fleet electrification more achievable.”
The Point of Purchase is the latest initiative by ComEd to help make the transition to EVs easier across northern Illinois — and not just easier, but more equitable, too.
That commitment to environmental equity means that half of ComEd’s nearly $90 million in available rebate funds will go to EIEC and low income communities, and in higher amounts.
Recognizing that upfront purchase cost is still a significant barrier to EV adoption, the Point of Purchase initiative will help more commercial customers – including businesses of all sizes, and public sector customers — to qualify for fleet vehicle purchase rebates ranging from $5,000 to $180,000 per vehicle at the time of purchase (rebate amounts depend on vehicle type, with Class 1 and 2 vehicles qualifying for a base rebate of $5,000, and rebates climbing up to medium-duty box trucks up through Class 8 electric semi trucks and on to transit and school buses > 35‘).
“ComEd’s commitment to advancing transportation electrification and supporting customers through every step of their fleet electrification journey is reinforced by this new initiative. At this juncture in electrification efforts, affordability is crucial, and this program makes it easier for businesses to electrify their fleets,” said Brian Robb, Director of Government Relations at Lion Electric. “As a member of the ComEd Point of Purchase network, (Lion is) looking forward to further increasing widespread EV adoption in northern Illinois.”
To obtain an instant rebate through the ComEd Point of Purchase initiative, fleet vehicle operators must coordinate the purchase of an EV through one of the approved dealerships or manufacturers in the ComEd Point of Purchase network (here’s a list of those). The dealership will then submit the necessary rebate voucher application, enabling the customer to purchase their new electric vehicle at a reduced rate.
And, yes: buyers can stack the ComEd rebate along with other federal and state rebates, covering up to 100% of the cost of a new EV.
The higher initial cost of EVs is often cited as the number one barrier to adoption, but the same could be said of a Rolex wristwatch. That is to say, higher prices don’t make things less appealing, just harder to buy — and programs like ComEd’s, which are lowering that barrier to entry to fleets that want to electrify, are big enough to move the needle.
Here’s hoping every bus and truck fleet in the region takes them up on their offer.
Metro Detroit is about to get a big boost of fast EV chargers, with more than 40 new ChargePoint ports set to come online across multiple sites owned by the Dabaja Brothers Development Group.
The first ultra-fast charging site just opened in Canton, Michigan. It’s owned and operated by Dabaja Brothers, who plan to follow it with additional ChargePoint-equipped locations in Dearborn and Livonia.
“We started this project because we saw a gap in our community – there was almost nowhere to charge an EV in Canton, and a similar lack of charging across metro Detroit,” said Yousef Dabaja, owner/operator at Dabaja Brothers.
Each metro Detroit site will feature ChargePoint Express Plus fast charging stations, which can deliver up to 500 kW to a single port, can fast-charge two vehicles at the same time, and are compatible with all EVs. The stations feature a proprietary cooling system to deliver peak charging speeds for sustained periods, ensuring that charging speed remains consistent.
Advertisement – scroll for more content
The stations operate on the new ChargePoint Platform, which enables operators to monitor performance, adjust pricing, troubleshoot issues, and gain real-time insights to keep chargers running smoothly.
Rick Wilmer, CEO at ChargePoint, said, “This initiative will rapidly infill the ‘fast charging deserts’ across the Detroit area, allowing drivers to quickly recharge their vehicles when and where they need to.”
If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!
Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad
FTC: We use income earning auto affiliate links.More.
Mercedes-Benz High-Power Charging and Starbucks have officially opened their first DC fast charging hub together, off the I-5 in Red Bluff, California.
The 400 kW Mercedes-Benz chargers are capable of adding up to 300 miles in 10 minutes, depending on the EV, and every stall has both NACS and CCS cables – they’re fully open DC fast chargers.
Mercedes-Benz HPC North America, a joint venture between subsidiaries of Mercedes-Benz Group and renewable energy producer MN8 Energy, first announced in July 2024 that it would install DC fast chargers at Starbucks stores along Interstate 5, the main 1,400-mile north-south interstate highway on the US West Coast from Canada to Mexico. Ultimately, Mercedes plans to install fast chargers at 100 Starbucks stores across the US.
Mercedes-Benz HPC opened its first North American charging site at Mercedes-Benz USA’s headquarters in Sandy Springs, Georgia, in November 2023 as part of an initial $1 billion charging network investment. As of the end of 2024, Mercedes had deployed over 150 operational fast chargers in the US, but it hasn’t disclosed an official number of how many chargers are currently online.
Advertisement – scroll for more content
Andrew Cornelia, CEO of Mercedes-Benz HPC North America, is leaving the company at the end of the month to become global head of electrification & sustainability at Uber.
If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!
Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad
FTC: We use income earning auto affiliate links.More.
The race for autonomous driving has three fronts: software, hardware, and regulatory. For years, we’ve watched Tesla try to brute-force its way to “Full Self-Driving (FSD)” with its own custom hardware, while the rest of the automotive industry is increasingly lining up behind NVIDIA.
Here’s a table comparing the two chips with the best possible specs I could find. greentheonly’s teardown was particularly useful. If you find things you think are not accurate, please don’t hesitate to reach out:
Feature / Specification
Tesla AI4 (Hardware 4.0)
NVIDIA Drive Thor (AGX / Jetson)
Developer / Architect
Tesla (in-house)
NVIDIA
Manufacturing Process
Samsung 7nm (7LPP class)
TSMC 4N (custom 5nm class)
Release Status
In production (shipping since 2023)
In production since 2025
CPU Architecture
ARM Cortex-A72 (legacy)
ARM Neoverse V3AE (server-grade)
CPU Core Count
20 cores (5× clusters of 4 cores)
14 cores (Jetson T5000 configuration)
AI Performance (INT8)
~100–150 TOPS (dual-SoC system)
1,000 TOPS (per chip)
AI Performance (FP4)
Not supported / not disclosed
2,000 TFLOPS (per chip)
Neural Processing Unit
3× custom NPU cores per SoC
Blackwell Tensor Cores + Transformer Engine
Memory Type
GDDR6
LPDDR5X
Memory Bus Width
256-bit
256-bit
Memory Bandwidth
~384 GB/s
~273 GB/s
Memory Capacity
~16 GB typical system
Up to 128 GB (Jetson Thor)
Power Consumption
Est. 80–100 W (system)
40 W – 130 W (configurable)
Camera Support
5 MP proprietary Tesla cameras
Scalable, supports 8MP+ and GMSL3
Special Features
Dual-SoC redundancy on one board
Native Transformer Engine, NVLink-C2C
The most striking difference right off the bat is the manufacturing process. NVIDIA is throwing everything at Drive Thor, using TSMC’s cutting-edge 4N process (a custom 5nm-class node). This allows them to pack in the new Blackwell architecture, which is essentially the same tech powering the world’s most advanced AI data centers.
Advertisement – scroll for more content
Tesla, on the other hand, pulled a move that might surprise spec-sheet warriors. Teardowns confirm that AI4 is built on Samsung’s 7nm process. This is mature, reliable, and much cheaper than TSMC’s bleeding-edge nodes.
When you look at the compute power, NVIDIA claims a staggering 2,000 TFLOPS for Thor. But there’s a catch. That number uses FP4 (4-bit floating point) precision, a new format designed specifically for the Transformer models used in generative AI.
Tesla’s AI4 is estimated to hit around 100-150 TOPS (INT8) across its dual-SoC redundant system. On paper, it looks like a slaughter, but Tesla made a very specific engineering trade-off that tells us exactly what was bottling up their software: memory bandwidth.
Tesla switched from LPDDR4 in HW3 to GDDR6 in HW4, the same power-hungry memory you find in gaming graphics cards (GPUs). This gives AI4 a massive memory bandwidth of approximately 384 GB/s, compared to Thor’s 273 GB/s (on the single-chip Jetson config) using LPDDR5X.
This suggests Tesla’s vision-only approach, which ingests massive amounts of raw video from high-res cameras, was starving for data.
Based on Elon Musk’s comments that Tesla’s AI5 chip will have 5x the memory bandwidth, it sounds like it might still be Tesla’s bottleneck.
Here is where Tesla’s cost-cutting really shows. AI4 is still running on ARM Cortex-A72 cores, an architecture that is nearly a decade old. They bumped the core count to 20, but it’s still old tech.
NVIDIA Thor, meanwhile, uses the ARM Neoverse V3AE, a server-grade CPU explicitly designed for the modern software-defined vehicle. This allows Thor to run not just the autonomous driving stack, but the entire infotainment system, dashboard, and potentially even an in-car AI assistant, all on one chip.
Thor has found many takers, especially among Tesla EV competitors such as BYD, Zeekr, Lucid, Xiaomi, and many more.
Electrek’s Take
There’s one thing that is not in there: price. I would assume that Tesla wins on that front, and that’s a big part of the project. Tesla developed a chip that didn’t exist, and that it needed.
It was an impressive feat, but it doesn’t make Tesla an incredible leader in silicon for self-driving.
Tesla is maxing out AI4. It now uses both chips, making it less likely to achieve the redundancy levels you need to deliver level 4-5 autonomy.
Meanwhile, we don’t have a solution for HW3 yet and AI5 is apparently not coming to save the day until 2027.
By then, there will likely be millions of vehicles on the road with NVIDIA Thor processors.
FTC: We use income earning auto affiliate links.More.