Connect with us

Published

on

The Royal Swedish Academy of Sciences has announced the Nobel Prize in Chemistry for 2024, recognising the significant contributions of three remarkable scientists. David Baker from the University of Washington and Howard Hughes Medical Institute has been awarded one half of the prize for his pioneering work in computational protein design. The other half is jointly awarded to Demis Hassabis and John M. Jumper from Google DeepMind for their groundbreaking AI model that predicts protein structures.

The Importance of Proteins in Life

Proteins are vital to life, acting as catalysts for chemical reactions and forming the structural foundation for cells and tissues. Baker’s innovative research has led to the creation of entirely new proteins, which could revolutionise pharmaceuticals, vaccines, and nanotechnology. His approach utilises the 20 amino acids that compose proteins, leading to unique protein structures with diverse applications.

Transforming Protein Structure Prediction

The challenge of predicting protein structures has existed for over 50 years. Since the 1970s, researchers have struggled to develop reliable methods for predicting how amino acid sequences fold into three-dimensional structures. In 2020, the introduction of the AlphaFold2 AI model by Demis Hassabis and John M. Jumper transformed this field. The model can accurately predict the structures of nearly all known proteins, facilitating advancements in various scientific domains, including antibiotic research and environmental science.

Implications for Humanity

Heiner Linke, Chair of the Nobel Committee for Chemistry, highlighted the impact of these discoveries, noting their potential to transform our understanding of life at the molecular level. The ability to design new proteins and predict their structures holds vast possibilities for humanity, paving the way for new therapeutic interventions and biotechnological innovations.

Continue Reading

Science

Researchers Discover New Plasma Wave in Jupiter’s Auroral Skies

Published

on

By

Scientists at the University of Minnesota Twin Cities have detected a new plasma wave in Jupiter’s aurora using NASA’s Juno spacecraft. The finding, published in Physical Review Letters, reveals how Jupiter’s magnetic field shapes auroral activity differently from Earth. The study opens new directions for understanding planetary auroras and magnetic field intera…

Continue Reading

Science

Rocket Lab Launches Five Classified Satellites on 70th Electron Mission

Published

on

By

Rocket Lab reached a key milestone with its 70th Electron rocket launch, successfully sending five secret satellites into orbit on Aug. 23, 2025. The mission, called “Live, Laugh, Launch,” lifted off from New Zealand and ended its live stream early at the request of the undisclosed customer. Rocket Lab now looks ahead to the debut of its larger Neutron rocket late…

Continue Reading

Science

Researcher Photographs Giant Solar Tornado and Massive Plasma Eruption at the Same Time

Published

on

By

On August 20, researcher Maximilian Teodorescu captured a rare photo of two dramatic solar events — a giant tornado of plasma rising 130,000 km and an eruptive prominence spanning 200,000 km. Both were shaped by the sun’s unstable magnetic fields. While the prominence did release a CME, it is not aimed at Earth.

Continue Reading

Trending