Connect with us

Published

on

New research has uncovered how the brain organises daily experiences into meaningful segments, much like scenes in a film. While we perceive life as a continuous flow, our brains automatically break memories into distinct moments. Scientists have long debated whether these boundaries are set by environmental changes or if they are determined by personal interpretation. Now, a study led by Christopher Baldassano, associate professor of psychology at Columbia University, suggests that the brain actively chooses these transitions based on our goals and experiences, offering new insights into memory formation.

How does the brain decide where one memory ends and another begins?

To explore this, Baldassano and his team conducted a brain-scan experiment using functional magnetic resonance imaging (fMRI). Volunteers listened to narratives involving various scenarios, such as a business deal, a proposal, and a breakup, while their brain activity was recorded. The research focused on changes in the medial prefrontal cortex (mPFC), a brain region involved in processing ongoing events.

The results showed that when key social events in the narratives occurred, such as the closing of a business deal, brain activity spiked, indicating a mental shift. Interestingly, when participants were instructed to focus on specific details like locations, their brain activity adjusted, showing how attention can change how we segment experiences.

The impact of attention on memory formation

The study also found that participants remembered details they focused on, but often forgot parts they weren’t instructed to pay attention to. This highlights how flexible memory is and how our attention shapes what we remember. David Clewett, assistant professor of cognitive psychology at UCLA, noted that the findings show we have significant control over how we interpret and remember events. Clewett believes that focusing on key moments could improve memory retention, which could be particularly useful in treating conditions like PTSD and dementia.

This research opens up new possibilities for understanding how memory works, suggesting that by consciously directing our focus, we might better control how we store and recall our experiences.

Continue Reading

Science

Reflect Orbital Plans to Light Up Parts of Earth Where Sunlight Does Not Reach by April 2026

Published

on

By

Reflect Orbital recently filed an application with the US FCC Space Bureau seeking permission to test launch its Earendil-1 non-geostationary orbit satellite. With this, the startup plans to begin redirecting the light emitted by the Sun with the help of glass-like satellites to dimly lit parts of the Earth. After closing its Series A round earlier this year, the comp…

Continue Reading

Science

Interstellar Comet 3I/ATLAS May Originate from Milky Way’s Hidden Frontier, New Study Suggests

Published

on

By

A new study proposes that interstellar comet 3I/ATLAS may have originated in the thick disk region of the Milky Way, a lesser-known frontier beyond the spiral arms. Observations of its composition and trajectory support this possibility. Detailed telescopic messages from this visitor may help unravel the structure and evolution of our galaxy.

Continue Reading

Science

ESA’s ExoMars Orbiter Captures Closest Images of Interstellar Comet 3I/ATLAS

Published

on

By

ESA’s ExoMars Trace Gas Orbiter captured the closest-ever images of interstellar comet 3I/ATLAS as it passed Mars at 130,000 mph. The faint object revealed a gas coma but no tail. Believed to be billions of years older than our Solar System, the comet will exit after nearing Jupiter in 2026.

Continue Reading

Trending