Connect with us

Published

on

Researchers at the Massachusetts Institute of Technology (MIT) have made a groundbreaking advancement in 3D printing active electronics without the need for traditional semiconductor materials. This breakthrough involves creating 3D-printed logic gates, fundamental components used in processing tasks within electronic devices. Instead of relying on conventional manufacturing processes, these logic gates were produced using standard 3D printing techniques and a biodegradable polymer. This step brings the concept of fully 3D-printed electronics closer to reality, offering exciting possibilities for accessible and decentralised electronics production.

Semiconductor-Free Logic Gates

MIT’s research team, led by Luis Fernando Velásquez-García from the Microsystems Technology Laboratories, has developed logic gates using a copper-doped polymer, avoiding the use of traditional semiconductors like silicon. These gates perform basic switching operations, similar to how silicon-based transistors function in everyday electronics. While these 3D-printed components are not yet on par with silicon transistors in terms of performance, they can be effectively used for less complex operations, such as controlling the speed of a motor.

The innovation lies in the ability to 3D print these devices using inexpensive, eco-friendly materials, potentially allowing electronics to be manufactured in a more sustainable and affordable manner. The idea is to democratise production, enabling individuals, businesses, and small labs to print their own devices.

The Future of Fully Printed Electronics

Despite the current limitations, such as the inability to miniaturise these components to the nanoscale level of traditional transistors, the potential of 3D-printed logic gates is immense. MIT’s research team is already exploring further developments to create more complex circuits and eventually fully functional 3D-printed devices.

This technology, if perfected, could revolutionise the way electronic devices are manufactured, making it possible to print active devices without the need for expensive, large-scale facilities. The implications for industries ranging from consumer electronics to healthcare and beyond could be vast, as this innovation brings down the cost and complexity of device production.

Continue Reading

Science

Researchers Discover New Plasma Wave in Jupiter’s Auroral Skies

Published

on

By

Scientists at the University of Minnesota Twin Cities have detected a new plasma wave in Jupiter’s aurora using NASA’s Juno spacecraft. The finding, published in Physical Review Letters, reveals how Jupiter’s magnetic field shapes auroral activity differently from Earth. The study opens new directions for understanding planetary auroras and magnetic field intera…

Continue Reading

Science

Rocket Lab Launches Five Classified Satellites on 70th Electron Mission

Published

on

By

Rocket Lab reached a key milestone with its 70th Electron rocket launch, successfully sending five secret satellites into orbit on Aug. 23, 2025. The mission, called “Live, Laugh, Launch,” lifted off from New Zealand and ended its live stream early at the request of the undisclosed customer. Rocket Lab now looks ahead to the debut of its larger Neutron rocket late…

Continue Reading

Science

Researcher Photographs Giant Solar Tornado and Massive Plasma Eruption at the Same Time

Published

on

By

On August 20, researcher Maximilian Teodorescu captured a rare photo of two dramatic solar events — a giant tornado of plasma rising 130,000 km and an eruptive prominence spanning 200,000 km. Both were shaped by the sun’s unstable magnetic fields. While the prominence did release a CME, it is not aimed at Earth.

Continue Reading

Trending