Connect with us

Published

on

In the near future, teleoperated rovers could be conducting important tasks on the moon, controlled by humans from Earth. This would allow for precise handling of various operations, such as collecting samples or assembling equipment. Researchers at the University of Bristol’s robotics laboratory in England have been working on a new teleoperation system, recently tested at the European Space Agency’s (ESA) European Centre for Space Applications and Telecommunications. Their system allows operators to control a rover virtually and use its tools without relying on live camera feeds, which are delayed due to the 1.3-second lag between Earth and the moon.

Virtual Simulation of Rover Operations

A key aspect of this system is the ability to manipulate a robotic arm in a virtual simulation to perform tasks such as scooping lunar regolith, a material that mimics the properties of real moon dust. The delay in communications between Earth and the moon is bypassed, making operations smoother and more reliable. This innovation could be supported by ESA’s Moonlight project, which plans to use satellites to relay signals for lunar missions.

Haptic Feedback for Improved Precision

One of the standout features of this system is the inclusion of haptic feedback, allowing operators to feel the texture and resistance of lunar regolith. Joe Louca, a researcher from the University of Bristol, explained that this feature could help astronauts understand the conditions on the moon, where gravity is only one-sixth of Earth’s. Haptic feedback is currently used in simple tasks, but there is potential for more advanced applications.

Future Applications and Challenges

Although developed with lunar missions in mind, these teleoperation techniques could also be adapted for future missions to Mars or asteroid exploration. Louca’s team has achieved promising results, with 100% efficiency when collecting material and 92.5% trustworthiness in the system. Despite some challenges with pouring material, adjustments are being made to improve accuracy.

Continue Reading

Science

New Analysis of 1977 Wow! Signal Reveals Stronger Cosmic Mystery

Published

on

By

The famous 1977 “Wow!” signal — a mysterious radio burst detected by Ohio’s Big Ear telescope — has been reanalyzed using modern computing techniques. Researchers digitized old telescope records, finding the signal was about four times stronger than first thought, peaking at 250 Janskys. The recalculations also refined its frequency and sky location, ruling …

Continue Reading

Science

Astronomers Capture Sharpest-Ever Solar Flare Images with NSF’s DKIST Telescope

Published

on

By

Astronomers have achieved a major breakthrough by capturing the sharpest images of a solar flare ever recorded, using the National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST). Observed at the hydrogen-alpha wavelength during the decay of an X1.3-class solar flare, the images unveiled hundreds of ultra-fine coronal loops averaging just 48 kilometers…

Continue Reading

Science

James Webb Detects Carbon Dioxide–Dominated Coma in Interstellar Object 3I/ATLAS

Published

on

By

The James Webb Space Telescope observed 3I/ATLAS, the third interstellar object detected in our solar system. Its coma is unusually rich in carbon dioxide with little water or carbon monoxide, suggesting a CO₂-rich core or an insulating crust. Findings raise new questions about its cosmic origin.

Continue Reading

Trending