Connect with us

Published

on

Researchers at Harvard University have developed a solid state battery that can be recharged in 10 minutes, and now it’s got Series A funding to scale production.

October 23 update: Adden Energy has raised $15 million in a Series A round led by At One Ventures with participation from Primavera Capital Group, Rhapsody Venture Partners, and MassVentures to scale production and bring solid state battery technology to car manufacturers.

The company will use the funding to construct a roll-to-roll pilot line production facility at its headquarters in Waltham, Massachusetts.

Adden Energy has already demonstrated technology that can deliver its battery in EV-compatible, commercially compatible pouch cell form-factors; this Series A-funded production line will enable it to scale the size of the batteries 100x.

Laurie Menoud, partner at At One Ventures and board member at Adden Energy, said, “Our investment in this technology is a signal of how important we know this to be, and it’s also our confidence level in Adden Energy’s ability to win market share through competitive unit economics. With the added energy density of lithium metal anodes, the cost per kilowatt hour is going to drop by 30%, and that is going to be a significant driver of adoption.”

Adden Energy says its next-generation batteries are on track to reach the goal of EV parity with internal combustion engines by 2028.

Harvard’s latest solid-state battery breakthrough

January 15, 2024: The lithium metal battery researchers developed at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) can also be charged and discharged at least 6,000 times — more than any other pouch battery cell.

The research published in Nature Materials describes a new way to make solid-state batteries with a lithium metal anode. Xin Li, Associate Professor of Materials Science at SEAS and senior author of the paper, said:

Lithium metal anode batteries are considered the holy grail of batteries because they have ten times the capacity of commercial graphite anodes and could drastically increase the driving distance of electric vehicles.

Our research is an important step toward more practical solid-state batteries for industrial and commercial applications.

One of the biggest challenges in designing solid-state batteries is the formation of dendrites on the surface of the anode. Dendrites are projections of metal that can build up on the lithium surface and grow like roots into the electrolyte. They pierce the barrier that separates the anode and cathode, causing the battery to short or even catch fire.

The dendrites form when lithium ions move from the cathode to the anode during charging, attaching to the surface of the anode in a process called plating. That creates an uneven, non-homogeneous surface on the anode, and allows dendrites to take root.

When discharged, that plaque-like coating needs to be stripped from the anode, and when plating is uneven, the stripping process can be slow and result in potholes that induce even more uneven plating in the next charge.

In 2021, the team designed a multilayer battery that sandwiched different materials of varying stabilities between the anode and cathode. This design prevented the penetration of lithium dendrites by controlling and containing them – but it didn’t stop them altogether.

But in this latest research, the researchers stop dendrites from forming by using micron-sized silicon particles in the anode to constrict the lithiation reaction and facilitate homogeneous plating of a thick layer of lithium metal.

In the Harvard researchers’ design, when lithium ions move from the cathode to the anode during charging, the lithiation reaction is constricted at the shallow surface and the ions attach to the surface of the silicon particle, but don’t penetrate further.

“In our design, lithium metal gets wrapped around the silicon particle, like a hard chocolate shell around a hazelnut core in a chocolate truffle,” said Li.

And, because plating and stripping can happen quickly on an even surface, the battery can recharge in about 10 minutes.

The researchers built a postage stamp-sized pouch cell version of the battery, which is 10 to 20 times larger than the coin cell made in most university labs. The solid-state battery retained 80% of its capacity after 6,000 cycles, outperforming other pouch cell batteries on the market today.

Harvard Office of Technology Development licensed the technology to Adden Energy, a Harvard spinoff company cofounded by Li and three Harvard alumni. Adden Energy has scaled up the technology to build a smart phone-sized pouch cell battery.

Electrek’s Take

This is yet another milestone achieved in the solid-state battery saga. The ultimate challenge is still bringing them to mass-production at a lower price than lithium-ion batteries. That will be the real game-changer for EVs.


If you’re an electric vehicle owner, charge up your car at home with rooftop solar panels. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing on solar, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Honda’s super low-cost electric motorcycle revealed in new patent images

Published

on

By

Honda's super low-cost electric motorcycle revealed in new patent images

Honda’s patent filings offer a clear glimpse into the company’s plans for an ultra-affordable electric motorcycle, integrating a proven chassis with a simple electric powertrain. It’s a clear glimpse into how the world’s most prolific motorcycle maker plans to challenge the nascent electric motorcycle market.

The filings in Honda’s new patent show a bike built around the familiar platform of the Honda Shine 100, a best-selling commuter in India, reimagined in electric form for a cost-effective future of urban mobility.

According to Cycle World’s Ben Purvis, Honda’s patent sketches outline a design that repurposes the Shine’s sturdy frame and chassis mounting points to house an electric motor and compact battery setup. Positioned where the engine once sat, a mid-motor drives the rear wheel via a single-speed reduction gear and chain – mirroring the essentials of the original gasoline-powered commuter bike.

Instead of a traditional fuel tank, the design features two lithium-ion battery packs, angled forward on either side of the spine frame and fitting neatly into the existing geometry.

Advertisement – scroll for more content

What makes the bike revealed in this patent even more interesting isn’t just its clever packaging, but rather the platform. By leveraging the proven Shine chassis, Honda can significantly cut development costs, manufacturing complexity, and market price. That’s a big statement given that surviving in price-sensitive markets like India demands simplicity and reliability. And by piggybacking off a proven platform, Honda can dramatically reduce the time to market from the time the boardroom bigwigs give the project the final green light.

Honda’s patent images show an electric motorcycle built on the same platform as the Honda Shine 100

The design still seems to feature styling that would be fairly consistent with the Shine 100, even down to a gas cap-like circular protrusion likely on top of a faux-tank. Some electric motorcycles in the past have used this location to hide a charging port, keeping similar form and function to outdated fuel tanks and fill ports, though it’s not clear if that is Honda’s intention.

It’s not clear what power level Honda could be targeting, but the Shine bike from which Honda’s creation draws its design inspiration could provide some clues. The Honda Shine 100 features a 99cc engine that provides around 7.3 horsepower (around 5.5 kW) and has a top speed of 85 km/h (53 mph), solidly planting it in the commuter segment of motorcycles.

The electric motorcycle in Honda’s design would be unlikely to target much higher performance as it would drastically increase the required battery capacity, and thus similar speeds of around 80-85 km/h (50-53 mph) would seem likely.

There also appears to be no active cooling, which would also limit the amount of power that Honda would be likely to draw continuously. The patent describes a channel formed by the two battery packs, leading to the speed controller and creating ducted cooling that pulls heat out of the batteries and electronics without drawing extra power.

Honda hasn’t released a final design, but I ask AI to create one based on the patent images. I’d ride that!

This emerging design is just one piece of Honda’s broader electric two-wheeler strategy. Their entry-level EM1 e: and Activa e: scooters launched with mobile battery packs and budget-friendly pricing. Meanwhile, high-tech concepts continually push the envelope. But this Shine-based bike aims squarely at the heart of mainstream affordability – a move likely to resonate with millions of new electric riders in developing regions like India where traditionally-styled small-dsiplacement motorcycles reign supreme.

Honda hasn’t revealed a timeline or pricing yet, but Honda’s patents offer real hope to fans of the brand’s electric efforts. If scaled effectively, this could be the first truly mass-market electric motorcycle from a major OEM, with a sticker price likely far below the $5,000 mark usually seen as a floor for commuter electric motorcycles from major manufacturers. That would also dramatically undercut models from brands like Zero or Harley-Davidson’s LiveWire, even as those brands rush to bring their own lower-cost models to market.

Electrek’s Take

Honda’s patent reveals a clever, no-frills EV designed to democratize electric two-wheeling, especially in developing markets that are even more price-sensitive than Western electric motorcycle customers.

Using a trusted frame, simple electric drive, and passive cooling, I’d say it definitely prioritizes cost over complexity, which is exactly what urban commuters need. If Honda can bring this to market, it would not just add another electric bike to the mix… it could create a new baseline for affordability in affordable electric mobility. Now we’re just waiting for the rubber to hit the road!

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Musk will ask Tesla shareholders to vote on bailout for twitter/xAI

Published

on

By

Musk will ask Tesla shareholders to vote on bailout for twitter/xAI

Tesla shareholders will vote on whether to invest into xAI, Tesla CEO Elon Musk’s private company, according to a post by Musk on twitter today.

Elon Musk is not just the CEO of Tesla, the electric car company that you may have heard about from time to time in Electrek’s coverage, but several other companies as well. And, famously, Musk companies often share resources – there has been much talk of incorporating SpaceX technology into Tesla vehicles, and putting xAI/twitter’s “MechaHitler”…. er, I mean, “Grok”…. feature into Tesla cars, among other collaborations that have happened over his various companies’ histories.

And today, Musk made it official that he will seek greater collaboration between three of his companies: Tesla, xAI, and twitter, in the form of an investment into xAI by Tesla.

The situation is a little more complicated than that, though.

Advertisement – scroll for more content

Tesla is a public company, owned by shareholders. Musk is the largest shareholder, but only owns around 12% of the company himself.

This is a different situation than xAI, which is a private company, owned by Musk. While there are other investors, he can exercise much more direct control over the company, and doesn’t have to put big decisions up to a vote.

One of the recent decisions he made with xAI was to purchase twitter in March. You may say, “wait, I thought he bought twitter back in 2022?,” and you’d be correct. Musk purchased twitter for $44 billion in 2022, which was widely agreed to be far too high a price, and then rapidly saw the company’s valuation drop to under $10 billion.

Then, in March 2025, Musk had xAI purchase twitter in an all-stock deal, valuing twitter company at $45 billion – again, far too high of a valuation, but considering he purchased the company from himself, he could set the price at whatever he wanted.

The move was widely considered to be a bailout of twitter, and the numbers involved considered arbitrary, perhaps partially to help save face for Musk after he made one of the worst business deals of all time.

Now the two are the same entity, and it seems clear that he would like to bring Tesla into the fold, in some way or another.

Musk has already improperly used resources from Tesla, a public company, to boost xAI and twitter, his private companies. Last year, he gave up Tesla’s priority position for highly sought-after NVIDIA H100 GPUs, instead shipping those GPUs to xAI and twitter. Tesla could have used these GPUs for training its FSD/Robotaxi systems, which Musk has claimed is the most important thing to Tesla’s future, but instead graciously sent them to his other company that used them to, uh, train a bot to say Nazi stuff apparently.

xAI has also poached talent from Tesla, multiple times, showing how Musk is using Tesla as a farm team for his private company.

So it hasn’t been a secret that Musk would like to use public money to bail out his private companies, as he’s been setting the stage for for a while now.

Musk has previously “discussed” getting Tesla to invest in xAI in the past, but the idea was never made official until today, when Musk said that he will put the idea to a shareholder vote.

In response to one of his superfans asking for the the opportunity to waste money on an overvalued social media app (which would mark the third time it has been overpaid for in as many years), and the backend fueling “MechaHitler,” Musk said this:

Tesla traditionally holds its annual shareholder meeting around the middle of the year, so if it were a normal year, this shareholder vote might be imminent.

But it’s not a normal year, as just last week Tesla announced an exceptionally late shareholder meeting, pushing it back to November, the latest it has ever held the meeting.

This means that Musk will have around four months to campaign for this idea – something that he’ll perhaps have more time to do, now that he’s no longer cosplaying as a government official.

We don’t know what the structure of the deal might look like yet, but Musk has been clear in the past that he wants more shares in Tesla. After selling many of his shares in order to buy twitter, he later complained that he doesn’t feel comfortable having less than 25% of Tesla. Given that his recent xAI/twitter deal was an all-stock deal, Musk could attempt to fund any investment of Tesla into xAI via shares, giving himself more Tesla shares in exchange for the company gaining a portion of xAI. Though to get him to 25% voting shares in Tesla, that would require either an enormous valuation for xAI, a small valuation for Tesla, or purchasing a large percentage of xAI (or, perhaps, all three, given how much higher TSLA’s valuation is than xAI’s).

We may however have a hint as to how that vote will go, because the last time Musk campaigned for a clearly terrible idea, Tesla shareholders ate it up.

In mid-2024, Musk ended his yearslong absenteeism at Tesla in a flurry of activity, hoping to persuade enough shareholders to vote for his illegal $55B pay package.

That flurry involved firing 10% of the company (supposedly in order to save money – though Tesla’s earnings have dropped drastically since), including important leadership and successful teams, which caused chaos with Tesla’s projects. He also pushed back an all-important affordable car project (which we’ve still heard nothing about) and held Tesla’s AI projects hostage while shifting both resources and staff from Tesla to his private AI company, even as he claims that AI is the future of Tesla.

In the end, these bad decisions worked, and shareholders voted to give their bad CEO his $55B pay package, even though it was later ruled to still be illegal.

So it looks like we’ve got another campaign coming up, and if last time was any indication, expect some really bad decisions along the way. It worked last time, didn’t it?


Republicans recently killed a number of home energy efficiency credits, including the rooftop solar credit. That means you only have until the end of this year to upgrade your home before republicans raise the cost of doing so by an average of ~$10,000. So if you want to go solar, get started TODAY, because these things take time and the system needs to be active before you file for the credit.

To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

E-quipment highlight: Perkins TracStar battery electric power unit

Published

on

By

E-quipment highlight: Perkins TracStar battery electric power unit

The off-highway equipment experts at Perkins and McElroy have teamed up to develop a plug-and-play battery electric power unit designed to help equipment OEMs and upfitters to seamlessly transition from diesel to battery electric power.

Designed to occupy the same space as the companies’ diesel-engined power units, Perkins dropped its new battery power unit into the similarly new McElroy TracStar 900i pipe fusion machine (specialized equipment used to join thermoplastic pipes like HDPE or polypropylene by heat-welding them end-to-end to form a continuous length pf pipe).

Perkins’ battery electric power unit replaces the company’s proprietary 134 hp, 3.6 liter 904 Series Tier V diesel engine, enabling units that are already deployed to be quickly upgraded to electric power – and helping trade allies and development partners to easily retrofit existing equipment in order to add zero-emission options to their operational fleet.

“We’re actively helping customers navigate the shift in power system requirements, with a range of advanced power systems including electric, diesel-electric and alternative fuel compatible engines,” says Jaz Gill, vice president, global sales, marketing at Perkins. “When it comes to the innovative fully integrated battery electric power unit, it can be ‘dropped in’ to a machine to replace a diesel engine. The system consists of a Perkins battery along with inverters, motors and on-board chargers – all packaged up into a compact drop-in system to support seamless transition from diesel to electric for our customers looking to make that move.”

Advertisement – scroll for more content

McElroy believes that an electric, emissions-free power unit like this one will open new opportunities and applications for its customers.

“Their team has done a phenomenal job of integrating their battery electric system into our TracStar 900i,” explains McElroy President and CEO Chip McElroy. “We’re really excited to see what the market thinks about this concept.”

Development of the battery electric powered pipe fusion machine was completed in about nine months. Future Perkins-powered electric equipment running the 904 diesel (small excavators, telehandlers, pumps, and gensets) could be developed even more quickly. You can find out more in the company’s promo video, below.

Perkins electric power unit


SOURCE | IMAGES: McElroy, Perkins.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending