Connect with us

Published

on

For thousands of years, Tibetan women have lived at extreme altitudes on the Tibetan Plateau, where the air is thin and oxygen is scarce. Over time, they’ve developed unique adaptations that allow them to thrive in this environment, according to new research from Case Western Reserve University.
The study, led by Professor Cynthia Beall, looks at how these women’s bodies have evolved to deal with the challenges of living at altitudes as high as 14,000 feet. The research highlights their ability to deliver oxygen more efficiently, which helps them survive and reproduce in this harsh environment.

Surviving in Thin Air

Living at high altitudes, where oxygen levels are significantly lower than at sea level, poses major difficulties for human survival. However, for more than 10,000 years, Tibetan women have managed not only to live but to build communities and raise families in these conditions. Beall’s study, published in Proceedings of the National Academy of Sciences, uncovers the physiological traits that have enabled these women to adapt to life with such little oxygen.

The Science Behind Their Adaptations

Beall’s team studied 417 women between the ages of 46 and 86 living in Upper Mustang, Nepal. Their goal was to understand how these women’s bodies manage oxygen intake and distribution, especially since this affects their ability to reproduce. The study found that those with higher oxygen saturation levels were more successful at having children. The key seems to be a balance in hemoglobin levels—enough to transport oxygen effectively, but not so much that it thickens the blood and strains the heart.

An Ancient Genetic Advantage

One of the most important findings is the role of the EPAS1 gene, a genetic trait passed down from ancient Denisovans. This gene, which helps regulate oxygen levels in the blood, is unique to the population living on the Tibetan Plateau and plays a critical role in their ability to adapt to high-altitude life. These adaptations have been crucial in allowing Tibetan women to not just survive, but to thrive, in an environment that would be extremely challenging for most people.

Continue Reading

Science

Scientists Warn Southern Ocean Could ‘Burp’ Stored Heat, Delaying Global Cooling for 100 Years

Published

on

By

New modelling suggests the Southern Ocean could one day release the vast heat it has stored from greenhouse gas pollution. If CO₂ levels were pushed to net-negative, deep convection may trigger a sudden “thermal burp” that warms the planet for decades. Though idealised, the study shows how Antarctica’s surrounding seas could shape long-term climate outcomes.

Continue Reading

Science

New Gravitational-Wave Signal May Reveal Primordial Black Holes Born After the Big Bang

Published

on

By

Scientists have spotted an unusual gravitational-wave signal that may reveal the universe’s first primordial black holes—tiny relics dating back to the Big Bang. Recorded by LIGO–Virgo–KAGRA in November 2025, the event involves an object far lighter than any known stellar remnant. If verified, it could reshape theories of black holes and dark matter.

Continue Reading

Science

James Webb Space Telescope Finds Unexpected Ultraviolet Radiation Around Young Protostars

Published

on

By

Astronomers using the James Webb Space Telescope have detected unexpected ultraviolet radiation around five young protostars in the Ophiuchus molecular cloud. Since infant stars are not expected to emit UV light, the finding challenges long-standing star-formation models. Researchers ruled out external illumination from nearby stars, concluding the UV must originate w…

Continue Reading

Trending