Connect with us

Published

on

For thousands of years, Tibetan women have lived at extreme altitudes on the Tibetan Plateau, where the air is thin and oxygen is scarce. Over time, they’ve developed unique adaptations that allow them to thrive in this environment, according to new research from Case Western Reserve University.
The study, led by Professor Cynthia Beall, looks at how these women’s bodies have evolved to deal with the challenges of living at altitudes as high as 14,000 feet. The research highlights their ability to deliver oxygen more efficiently, which helps them survive and reproduce in this harsh environment.

Surviving in Thin Air

Living at high altitudes, where oxygen levels are significantly lower than at sea level, poses major difficulties for human survival. However, for more than 10,000 years, Tibetan women have managed not only to live but to build communities and raise families in these conditions. Beall’s study, published in Proceedings of the National Academy of Sciences, uncovers the physiological traits that have enabled these women to adapt to life with such little oxygen.

The Science Behind Their Adaptations

Beall’s team studied 417 women between the ages of 46 and 86 living in Upper Mustang, Nepal. Their goal was to understand how these women’s bodies manage oxygen intake and distribution, especially since this affects their ability to reproduce. The study found that those with higher oxygen saturation levels were more successful at having children. The key seems to be a balance in hemoglobin levels—enough to transport oxygen effectively, but not so much that it thickens the blood and strains the heart.

An Ancient Genetic Advantage

One of the most important findings is the role of the EPAS1 gene, a genetic trait passed down from ancient Denisovans. This gene, which helps regulate oxygen levels in the blood, is unique to the population living on the Tibetan Plateau and plays a critical role in their ability to adapt to high-altitude life. These adaptations have been crucial in allowing Tibetan women to not just survive, but to thrive, in an environment that would be extremely challenging for most people.

Continue Reading

Science

ISS Experiment Shows Moss Spores Can Survive Harsh Space Environment

Published

on

By

A hardy moss species survived 283 days on the outside of the ISS, enduring vacuum, radiation and extreme temperatures. More than 80% of its spores lived and germinated back on Earth. The findings reveal surprising resilience in early land plants and may support future Moon and Mars ecosystem designs.

Continue Reading

Science

NASA’s Perseverance Rover Finds Metal-Rich Rock on Mars: What You Need to Know

Published

on

By

NASA’s Perseverance rover has identified Phippsaksla, a sculpted, metal-rich boulder in Jezero Crater with an unusually high iron-nickel composition. The rock’s chemistry strongly suggests it is a meteorite formed elsewhere in the solar system. Its presence within impact-shaped terrain offers fresh clues about ancient asteroids and helps scientists reconstruct key…

Continue Reading

Science

Asteroid 2024 YR4: Earth Safe, but New Data Shows Small 2032 Lunar Impact Risk

Published

on

By

Asteroid 2024 YR4 has been cleared as an Earth threat, but updated observations show a small chance it could hit the Moon in 2032. Space agencies are monitoring the asteroid closely, expecting new data to narrow uncertainties and determine whether the lunar-impact probability will drop or rise.

Continue Reading

Trending