Connect with us

Published

on

Astronomers have uncovered something surprising while looking 13 billion years into the past using the James Webb Space Telescope (JWST). They’ve spotted supermassive black hole-powered quasars that appear to be hanging out in isolation. This is odd because, according to current theories, black holes need to be surrounded by a lot of material to grow quickly. But these quasars seem to be in areas with little to no fuel to support such growth, leaving scientists scratching their heads.

Unusual Quasar Fields

A team led by Anna-Christina Eilers, an assistant professor of physics at MIT, studied five of the earliest known quasars. While some were in environments packed with matter, others were almost empty, which was unexpected. Typically, quasars need dense surroundings to grow their black holes, but these particular ones seem to be growing without the usual supply of gas and dust. As Eilers put it, “It’s difficult to explain how these quasars grew so massive if there’s nothing nearby to feed them.”
Challenges to Black Hole Growth Theories

In the present universe, supermassive black holes sit at the center of galaxies and feed on surrounding matter, creating the bright phenomenon we know as quasars. The newly discovered quasars, however, appear to lack the necessary resources. This raises a big question: how did these black holes grow so fast in such a short time? Right now, the existing theories about black hole formation don’t seem to explain what the JWST is showing.

The Next Steps

This discovery raises more questions than it answers. The team thinks it’s possible that some of these seemingly “empty” quasar fields might actually be hiding material behind cosmic dust. They’re now planning to tweak their observations to see if they can find what’s been missed. What’s clear is that we’re still far from understanding how these supermassive black holes came to be so early in the universe’s history.

Continue Reading

Science

Hubble Captures Rare Collision in Nearby Planetary System, Revealing Violent Planet Formation

Published

on

By

Astronomers using NASA’s Hubble Space Telescope have witnessed rare collisions between rocky bodies in the Fomalhaut system. The glowing debris clouds created by these impacts offer a unique glimpse into how planets form and highlight challenges in identifying true exoplanets.

Continue Reading

Science

Astronomers Observe Black Hole Twisting Spacetime for the First Time, Confirming Einstein’s Theory

Published

on

By

Astronomers have directly observed a black hole twisting spacetime for the first time, confirming Einstein’s long-standing prediction. The effect was detected during a violent stellar destruction event, where repeating X-ray and radio signals revealed a slow cosmic wobble. The discovery provides new insight into black hole spin, jets, and extreme gravity.

Continue Reading

Science

Scientists Rule Out Elusive Sterile Neutrino After 10-Year Hunt, Shaking Particle Physics

Published

on

By

After ten years of experiments, physicists found no evidence for the sterile neutrino, once thought to explain unusual neutrino behaviour. The MicroBooNE experiment at Fermilab analysed neutrinos from two beams and ruled out the particle with 95% certainty. The findings narrow the search for new physics and inform future experiments like DUNE.

Continue Reading

Trending